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with Material I being Material A and Material II being Material B )

( _ = Z + c o , ko= a t "_-"A-, a t = N°°/h )

(a/h = 1, h2/h _ = 10)

Figure 2.20 Normalized stress intensity factor distribution in a two - layer orthotropic

plate containing a through crack of length 2a under bending. ( see Figure 2.2 b )

( both Material I and Material II are orthotropic materials

with Material I being Material A and Material II being Material B )

(_ =z + c 0,k0= a b4-K-, a b = 6 M°°/h 2)

(a/h = l, h2/h 1 = 10)

Figure 2.27 Normalized stress intensity factor distribution in a 3-unsymmetrically

-layered plate containing a through crack under tension. ( see Figure 2.2 c )

( Materials I and III are isotropic, with el---- v3 = 0.3,

and El/ E 2 = 3.0, E3/ E 2 = 10. ;

Material II is "as if' isotropic, with E 2 and v2= 0.3,

and Gxz = Gyz = 3 Gxy )

(_=z+ c O,kO= a t _-_', a t = N°°/h )

(a/h = 0.5, h3/h 2 = 0.2, hl/h 2 = 0.2)
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Figure 2.28 Normalized stress intensity factor distribution in a 3-unsymmetrically

-layered plate containing a through crack under bending. ( see Figure 2.2 c )

( Materials I and III are isotropic, with Vl-" v 3 -- 0.3,

and El/ E 2 = 3.0, E3/ E 2 = 10. ;

Material II is "as if" isotropic, with E 2 and v2= 0.3,

and Gxz = Gyz = 3 Gxy )

(_ = z + c 0,k0= a bq'--if', a b = 6M°°/h 2)

(a/h--0.5, hs/h 2 =0.2, hl/h 2=0.2)

Figure 2.29 Normalized stress intensity factor distribution in a 3-unsymmetricaily

-layered plate containing a through crack under tension. ( see Figure 2.2 c )

( Materials I and III are isotropic, with Vl-" 0.5 and v 3 ---- 0.2,

and El/ E 2 = 3.0, E3/ E 2 = 10. ;

Material II is "as if" isotropic, with E 2 and v2- 0.,

and Gxz = Gyz - 3 Gxy )

(P.= z + c 0,k0= _rt q'--if-, a t = N°°/h )

(a/h =0.5, h3/h 2=0.2, hl/h 2--0.2)

Figure 2.30 Normalized stress intensity factor distribution in a 3-unsymmetrically

-layered plate containing a through crack under bending. ( see Figure 2.2 c )

( Materials I and Ill are isotropic, with Vl-- 0.5 and v 3 -- 0.2,

and El/ E 2 = 3.0, E3/ E 2 = 10. ;

Material II is "as if" isotropic, with E 2 and v2"- 0.,

and Gxz = Gyz = 3 Gxy )

(_ = z-t- c o ,ko-- o"b q--'£'-, a b'- 6 M°°/h 2)

(a/h = 0.5, h3/h 2 = 0.2, hl/h 2 = 0.2)
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finite element solution [11], the classical plate theory and the Reissner
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Figure 4.12 Normalized stress intensity factor at the maximum penetration point
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Figure 4.15 Normalized stress intensity factor at the maximum penetration point
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Abstract

The main objective of this study is to develop an analytical method for a

relatively accurate calculation of Stress Intensity Factors in a laminated orthotropic

plate containing a through or a part-through crack. The laminated plate is assumed

to be under bending or membrane loading and the modeI problem is considered.

First three transverse shear deformation plate theories (Mindlin's displacement

based first-order theory, Reissner's stress-based first-order theory and a simple-higher

order theory due to Reddy) are reviewed and examined for homogeneous, laminated

and heterogeneous orthotropic plates. Then based on a general linear laminated plate

theory, a method by which the stress intensity factors can be obtained in orthotropic

laminated and heterogeneous plates with a through crack is developed. Examples are

given for both symmetrically and unsymmetrically laminated plates and the effect of

various material properties on the stress intensity factors are studied.

In order to implement the line-spring model which is used later to study the

surface crack problem, the corresponding plane elasticity problem of a two-bonded

orthotropic plate containing a crack perpendicular to the interface is also considered.

Three different crack profiles: an internal crack, an edge crack and a crack

terminating at the interface are considered. The effect of the different material

combinations, geometries and material orthotropy on the stress intensity factors and

on the power of stress singularity for a crack terminating at the interface is fully

examined.

The Line Spring model of Rice and Levy is used for the part-through crack

problem. The surface crack is assumed to lie in one of the two-layered laminated

orthotropic plates due to the limitation of the available plane strain results. Rather

extensive numerical results are given for both laminated composite and bonded metal-

ceramic structural materials with various geometrical configurations. These results

will be useful in brittle fracture analysis and more importantly, in subcritical crack

growth studies.

All problems considered in this study are of the mixed boundary value type and

are reduced to Cauchy type of singular integral equations which are then solved

numerically.



Chapter 1. Transverse Shear Deformation Theories

1.1INTRODUCTION

In recent years the potential of laminated composite materials for use as

structural members has inspired considerable research activity in the study of the

response of anisotropic laminated media. Because of the complicated internal

structure of composites the stress field in the system is truly three-dimensional in

character. One possible means of simplifying the three-dimensional equations of

elasticity is to use the concept adopted in the formulation of plate theories. By

following this approach various theories have been developed to treat the mechanical

response of composite laminates. For example, classical laminated plate theory, which

is an extension of the classical plate theory to laminated plates, was discussed by

Lekhnitskii [1] by employing the Kirchhoff hypothesis in the analysis of symmetrical

laminates. However, the classical laminate theory is inadequate for laminated plates

made of advanced filamentary composite materials because most of these advanced

composites have a low ratio of the transverse shear modulus to the in-plane modulus.

Moreover, when we study the problem of a cracked plate under general loading

conditions, the classical theory gives the following asymptotic results for the stress

resultant distributions around the crack tip

Nij _ _r2r [ kltfijl(0) + k2tfij2(0)] '

Mij ---- _rr [ klbgijl(9'_') q- k2bgij2(0'g)] '

V i _ _ k3h3i(O'u)'
(id=l,2),

(1.1a)

whereas an appropriate transverse shear deformation theory ( such as that

Reissner's or Mindtin's ) provides the corresponding fields as follows:

of



Nij - _r2r [ kltfijl(0) + k2tfij2(0)] '

Mij "" _r [ klbfijl(0) + k2bfij2(0)] '

Vi - _2rr k3fi3(0)'
( i_i = 1,2 ), (1.1b)

where Nij, Mij and V i are respectively membrane, bending and transverse shear

components of the stress resultants, kl, k 2 and k 3 are respectively the modes I, II,

and III stress intensity factors, r and 0 are the local polar coordinats in XlX 2 plane,

and the angular expressions fij 1, fij 2 and fi 3 are identical to the results given by the

continuum elasticity solutions of crack problems [ 2 ] and [ 3 ].

Expressions (1.1a) clearly show that the solutions regarding the bending and

transverse shear stress states at the crack tip given by classical theory do not conform

to the standard results obtained from the elasticity solutions. That is, the angular

distributions for Mij and V i differ from the expected elasticity results and are

dependent on the Poisson's ratio, and the 3/2 singularity given for V i is physically

unacceptable. Furthermore, because of these discrepencies, the critical fracture

mechanics parameters kl b, k2 b and k3 obtained from the classical theory are bound to

be inaccurate. These inconsistencies are perhaps due to the fact that the classical

theory can accommodate only two boundary conditions on the crack surface, namely

the normal component of the bending moment and the Kirchhoff's effective transverse

shear resultant combining the twisting moment and the transverse shear resultant,

and it is likely to be inaccurate in the region of primary interest near the crack tip.

All these shortcomings are seem to be removed when a transverse shear deformation

theory is used.

Currently two groups of shear deformation plate theories are known in the

literature: ( 1 ) stress-based theories and ( 2 ) displacement-based theories. The first

stress-based shear deformation plate theory is due to Reissner [ 4 ], [ 5 ] and is based

on a linear distribution of the in-plane normal and shear stresses through the

thickness. The origin of displacement-based theories is attributed to Basset [ 6 ], and

Hildebrand _z Reissner & Thomas [ 7 ]. These first-order shear deformation theories

assumed the following displacement field



Ul (x,Y, z ) = u (x, Y) + z ¢× (x, y ) ,

u 2 (x,y,z) =v (x,y) + z ey (x,y),

u 3 ( x, y, z ) = w(x,y ). (1.2)

The shear deformation theory based on equation ( 1.2 ) for plate is often

referred to as the Mindlin plate theory [ 8 ]. Analogous to the approaches, which are

based on introducing a priori plausible assumptions regarding the variation of

displacement, strain and/ or stresses in the thickness direction, Yang, Norris and

Stavsky [ 9 ] presented a generalization of Mindlin's first order shear deformation

plate theories for anisotropic plates. In Mindlin type of first-order theory a correction

factor has to be introduced to account for the fact that it predicts a uniform shear

stress through the thickness of the plate, which is obviously incorrect for most of

cases.

For a more realistic evaluation of the stress fields and the shear stresses, high-

order shear deformation theories have been proposed [ 10 ]. These high-order theories

are cumbersome and computationaIly more demanding, because with each additional

power of the thickness coordinate, an additional dependent unknowns is introduced

into the theory. Recently Reddy [ 11 ] has extended the Levinson simple-high-order

[ 12 ] approach of homogeneous isotropic plates to the laminated anisotropic

composite plates. This simple-high-order laminated plate theory not only accounts for

the parabolic variation of the transverse shear strains through the thickness, but also

contains the same 5 dependent unknowns as in the first order theories.

These three above mentioned transverse shear deformation theories

( lZeissner's, Mindlin's and Reddy's ) are reviewed and examined in this chapter. For

each approach the basic assumptions, strain and stress fields, the plate constitutive

equations and governing equations are examined. In addition, the controversies that

definitely exist in the plate theory approach are explored. Homogeneous plate theories

are studied first, then follows the extension to the laminated plate theories. Here, the

laminated plate theories are the so-called single-layer laminate theories which are

based on replacing the laminated plate by an equivalent single-layer anisotropic plate

and introducing global displacement, strain and/or stress approximations in the

thickness direction. It has been shown that these single-layer laminate theories, even

the first-order theory, are adequate in representing global behavior, such as deflections
4



and stresses,of thin composites.If the local effects,such as interlaminar stress

distributions, delaminations on fiber/matrix interface, etc, are to be studied one then

has to consider the so-called multi-layer laminate theories, which are based on

piecewise stress/ displacement approximations in the thickness direction. Here only

single-layer laminate theories are studied.



1.2 TRANSVERSESHEARDEFORMATIONPLATE THEORIES

........... HOMOGENEOUSISOTROPICPLATE

In this sectionthe plate underconsiderationis assumedto be a thin elastic

homogeneousisotropic plate of thicknessh. The origin of a Cartesian coordinate

system is located within the midplane ( x, y ) with the z axis being normal to this

plane. As in the standard plate theory, it is also assumed that the plate surfaces z =

+ h/2 are subjected to surface traction defined by

and

_xz (x,Y, 4- h/2) = 0,

ayz (x,Y, + h/2) =0,

az (x,y, q- h/2)'-- ql,

¢z (x,y,-h/2)=-q2,

(1.3a)

(1.3b)

where ql and q2 can be arbitrary functions of x and y.

The stress and moment resultants, each per unit length, are defined in the

usual way, i.e.

+h/2
( Qx, Qy ) = _-h/2 ( O'xz,_yz) dz,

i+h/2
( Mx, My, Mxy ) = -h/2 ( O'x' fly' O'xy ) Z dz.

(1.4)

Because linear homogeneous plate bending theory is used, the in-plane stress

resultants Nx, Ny and N×y, which are uncoupled with the bending resultant

components, are not presented here.

Based on the above general assumptions, three different plate bending theories

are discussed in detail in the following subsections.



1.2.1MindliB's Displacement Based First-order Plate Theor_

1.2.1.1 The Assumed Displacement Field

In Mindlin's plate theory, the primary assumptions are based on the

displacement fields [ 8 ], which, in the absence of the time parameter t, are described

as follows:

u(x,y,z)- ZCx (x,y),

v(x,y,z)=ZCy (x,y),

w (x,y,z) = w(x,y). (1.5)

Notice u and v are linear functions of z and w is independent of z. Here the three plate

displacement components Cx, Cy and w are the unknown functions. Because of the

linear features of u and v, this theory is referred to as the first order theory.

1.2.1.2 The Strain Field

Using standard linear elasticity approach, the strain field can be obtained from

( 1.5 ) as

0u 0¢x
_x- -F-i- = z -_-x ,

Ov OCy

0u 0v _ 0¢x OCy
_×Y= W + 0--_--z (-#-+--_), (1.6)

Ou O_ 0¢o
7xz= 0-7 + _= ¢× + Ox '

_ Ov O_ _ 0_o
7yz-- _ + _--Cy + Oy '

_ = o ( 1.v )



We can see that by using assumption ( 1.5 ) the in-plane strains are linear

functions of z while the out-of-plane strains are constants through the thickness of the

plate. Normal strain ez is neglected.

1.2.1.3 Constitutive Equations

For the thin plate, we assume the transverse normal stress may be neglected

in comparison with the othel; stress components. Then the constitutive equations for

the homogeneous isotropic plate can be obtMned as follows:

_x = _ ( O-x- _,,,y ) ,

ey =-_- (- v ax + _y ) ,

7yz = ---_-_O'yz, _'×_= -_--__x, ,
1

7Xy = _ axy , ( 1.8 )

crx __ E
1 - v2 ( (x + v ey ) ,

_y _ E ( cy + v Cx)
1 - _,2

Cryz = G ")'yz , aXZ : G Txz , Oxy = G ")'xy • (1.9)

1.2.1.4 The Stress Field

( a ) Obtaining the stress fields from the constitutive equations

The general constitutive equations assume the linear strain-stress relationship.

Considering expressions ( 1.6 ), ( 1.7 ) and (1.9) the stress field in the plate may be

expressed as

E O.¢X _¢Y
ax=Z( 1--tfl ) ("_--t- V--_ -)=cl(x'y)z

8



_y-_(1_--V7) (-_y +_-E)=_2(×,y)_

OCx aCy
axy=zG (-_--+ "-_-x )=c3(x,y)z

(1.10)

_=G (¢×+ _)=c 4(x,y)

,_yz= G (¢y+ -_-,)=c5(×,y) (1.11)

where c i ( i = 1, 5 ) are functions of x and y only.

Again, the in-plane stresses are linear functions of z and the out-of-plane

stresses are constant through the thickness direction. Expressions ( 1.11 ) obviously

violate the boundary conditions ( 1.3 a ).

( b ) Obtaining stress field from the equilibrium equations :

Here the in-plane normal and shear stresses are the same as expressed in

( 1.10 ) but, we use a different approach, an equilibrium equation approach, to

express the out-of-plane shear stresses. From the standard equilibrium equations in

elasticity

_0" x OO"xy O0"xz

ax +-_#- + O---f-=° (1.12)

we have

OqCrXZ __ (90" x OCrxy

--_- - -( -b7 + -_- ).

Integrating ( 1.12 ) and using the expressions ( 1.10 ) we find

(1.13)



= O°'xz I _ Oax OCrxy,,xz(X,y)= -h/_ _ dz = - (_-+-_)dz-hi2

i z _c 1 onc3---- ('_-+ )zdz
-h/2 _ "

(1.14)

It can easily be seen that axz has the term of z 2 , i. e.

O'xz o¢ z2+ ..... ( 1.15 a )

In the same manner, it can be shown that

6ryz _ z 2 -_ ....... ( 1.15 b )

Comparing ( 1.11 ) with ( 1.15 ), it is clear that in Mindlin's plate theory there is an

inherent inconsistency regarding the stress field.

1.2.1.5 Plate Constitutive Equations

Substituting ( 1.6 ) and ( 1.7 ) into equations ( 1.9 ) and performing the

integration from ( - h/2 ) to ( -t- h/2 ), the following equations are obtained between

the moment resultants to the plate-displacement components:

Mx

My

Mxy

= D

1 v 0 l

v 1 0

0 0 (1-v)/2
kx1ky ,

kxy

(1.16)

where

and

D

k x _

E h 3

12(1-v 2 )

0 Cx ky = 0 Cy
0x ' Oy '

kxy - JI- q

0 Cy

_X

( 1.17)

10



and

Q×----KGh( ¢×-[- --_-x) ,

Qy=KGh( Cy+ -_--). (1.18)

Noticethat a parameterK hasbeenintroducedinto the expressionsfor the transverse

shearresultants.Herethe constant, K, commonly known as a correction factor, is

used to account for the fact that the transverse shear stresses are constant through

the thickness of the plate. By comparing to the exact theory various values of K has

been used for homogeneous isotropic plates. For example Reissner [ 4 ], Mindlin [ 13 ],

and Uflyand [ 14 ] used values of 5/6, r2/12, and 3/2 respectively. The evaluation of

K in a specific problem depends on either the exact elasticity solution of the problem

or experimental evidence.

1.2.1.6 Governing Equations:

As in the standard

equilibrium equations:

plate theor:_, the stress resultants must satisfy the

OMx #Mxy

0x +_-Qx=0,

0My 0Mxy
0y q- 0x -Qy--0,

0Qx 0Qy = 0 .
_x + Oy (1.19)

Substituting ( 1.16 ), ( 1. 18 ) into ( 1. 19 ) the governing equations can be obtained

as

11



}r'i ( _)' kk; _' k; t_X' kk; 1_X,k; 1_Y'kk; _Y,k; _x ; t_y ) -_-- 0 ,

i=(1,2,3), k=(x,y). (1.20)

Under proper boundary conditions, the unknown functions w, Cx and Cy could be

solved for various specific problems.

1.2.2 ]_eissner's _tress Based First-order Plate Theory:

1.2.2.1 The Assumed Stress Field

Reissner's plate theory is based on a linear distribution of the in-plane normal

and shear stresses through the thickness:

°'x = h2/6 h/2''

My z

Cry- h2/6 h/2 '

Mxy z

axy -- h2/6 h/2 ( 1.21 )

The distribution of the transverse normal and shear stresses is determined from the

equilibrium equations of the elasticity theory:

00" x 0O'xy O0"xz

"_-+-_-y + Oz =o,

OO'xy jr. OO'y OO'yz
Ox Oy + --ff_ = 0,

O0"xz OCryz 00" z

Ox +-8_--y + 0--_-=0" (1.22)

12



Integratingequations( 1.22) and usingthe boundaryconditions,following( 1.21 )

and the plate equilibriumequations( 1.19 ) we can derivethe expressions_rxzas
follows:

i z O0.xz I = OCrx OaxYCrxz =- _ dz =- (_ + _) dz
-hi2 -hi2

" OMx OMxy Z dz=- ( _ + -W- ) -_/12

f z z dz= - Qx -h/2 h3/12 '

3 Qx 2
[ ( 1.23 a )

Similarly the transverse stress C_yz and the normal stress crz can be obtained in term

of their resultants and the coordinate z

) ], ( 1.23 b )

and

3q i

where q ---- ql - q2 • ( 1.24 a, b )

From expressions ( 1.21 ), it can be seen that in-plane normal and shear stress are

linearly distributed through the thickness, which is the same as in Mindlin's theory

( see expressions ( 1.10 )). Because of this in literature both of these theories are often

called Mindlin-Ressiner's first-order plate theory. On the other hand, in Reissner's

theory the transverse shear stresses, obtained from the equilibrium equations, are

parabolicly distributed through the thickness. Therefore the boundary conditions at

top and bottom of the plate [ see ( 1.3 a ) ] are satisfied.

13



1.2.2.2TheStrainField

Assumingan isotropicmaterialandthe displacementsu, v andw of anypoint
in the plate to besmallascomparedwith its thicknessh, weusethe followinggeneral
stress-strainrelations:

_ cqu 1
c×_ b-;=-E[_x-V(_y+"z)],

Cy = OV 1_y- E [,,y-v(O'x+O-z)],

'Yxy = _-_ + _ = O'×y, ( 1.25 )

8u Ow 1
7xz= 3_z+ 3_x=--G-_XZ'

Ov O_.__.w 1
7yz = _z + Cgy =--"G °'yz ' ( 1.26 )

ez = _ = ---g- [ _z- _' ( "x + *y )]. ( 1.27 )

Notice that, for the case q = 0, the in-plane normal and shear stress are linear

function of z, which is again the same as those in Mindlin's theory. However, as

expressed in ( 1.26 ) and following ( 1.23 ) the transverse shear strains have the form

of az2+ b.

1.2.2.3 The Displacement Field

Substituting ( 1.21 ) into ( 1.25 ), letting q = 0 and performing the

integrations we can easily see that the in-plane displacements u and v are linearly

distributed through the thickness, which again are same as the expressions in

Mindlin's theory. Unlike the assumption that the plate deflection w is constant

throughout the thickness of the plate in Mindlin's theory, the expression for w in

Reissner's theory has an inconsistency. Using the sixth relationship in the stress-strain

relation

14



0_ 1
0z -- E- [ crz - u ( crx q- Cry ) ] ( 1.27 )

for q = 0, and the linear law for the distribution of the stresses _rx and Cry, w will

have the term of z 2. Note that the same conclusion can be drawn from the expression

( 1.26 ). However in Reissner's original article [ 4 ], he stated that to be consistent

with the assumption of linear bending stress distribution it is assumed that the

displacement u and v vary linearly over the thickness of the plate and that w does not

vary over the thickness of the plate. To overcome this inconsistency, some authors

later ( for example [ 15 ] ) have introduced some average value _ of the transverse

displacement, taken over the thickness of the plate, and then arrived at the governing

equations in terms of this average value of _ . In this way instead of finding the

actual distribution of w ( x, y, z ), somehow the average value w as a function of x

and y is sought.

1.2.2.4 Plate Constitutive Equations

Following [ 15 ], introducing some average value w of the transverse

displacement, taken over the thickness of the plate, as well as some average values ex

and ey of the rotation of the sections x = constant and y = constant respectively,

and defining these quantities by equating the work of the resultant couples on the

average rotations and the work of resultant forces on the average displacement to the

work of the corresponding stresses on the actual displacements u 0 ( x, y, z ), v 0 ( x,

y,z) and w 0 (x,y,z)in the same section, we find

+hi2 +h/2

I ax u0dz=Mxex, [ cry vodz=Myey ,
-h/2 a-h�2

+h/2 j.+h/2Crxyv0 dz = Mxy Cy ,
J-hi2 -hi2

axy U0 dz = Mxy ex ,

+h/2 I +h/2_xz w0dz= Qx ¢¢,
J--h/2 -h/2

15

O'yz w0 dz = Qy w .
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Now substituting expressions( 1.21 ) for the stressesinto equations( 1.28 ) the

followingrelationsbetweenthe averageandactualdisplacementcanbeobtained

I +h/2 Wo [1- (-_)2]dz,
_ _'_ -h/2

+h/2
_ 12 r uo

¢× -"-_- J-_,,2 _ z dz ,

12 j.+h/2 VOCY : h 2 -h/2 --if- zdz. (1.29)

Using the stress-strain relations ( 1.25 ), for q : 0, we can express the in-plane

stresses components erx, ay and any in terms of the actual displacements as follows:

O- x

E 0Uo 0Vo
1._2 ( -_-+_-),

Cry __ E Ov0 0Uo1__2 ( _7+_x ),

0% 0v o E 0% 0v o
_xy=C(-_-+-_-)= 2(1+v) (_-+_-_-). (1.30)

Substituting ( 1.30 ) into ( 1.21 ), multiplying by 12
--_ z dz, integrating between

z = - h/2 and z = h/2, and observing relations ( 1.29 ), we arrive at the expressions

Mx

My

Mxy

= D

I 1 v 0 1

v 1 0

0 0 (1-_)/2

kx

ky

kxy

where

D
E hs

12 ( 1-_,2)
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and

O#'x kx -- aCy
kx=--_-_, ---_y ,

0¢ x + O_'y
kxy = O'-_- -_--_-"

(1.31)

In like manner, substituting expressions ( 1.23 ) into ( 1.26 ), multiplying the result

by 3 [ 1 - ( _ )2 ] dz and integrating between the limits z = + h/2 , we2h

obtain:

QX

Qy

_ _ Ell
-- 12 l+v

¢x+_£--

., +0_
,vy ay

= Gh
¢+0w

x ax

0_
¢Y+8-7-

(1.32)

Reissner, in his treatment of this subject, makes use of Castigliano's principle of least

work to obtain the above expressions ( 1.31 ) and ( 1.32 ).

Comparing the plate constitutive equations ( 1.31 ) and ( 1.32 ) from

Reissner's theory with ( 1.16 ) and ( 1.18 ) from Mindlin's theory we can see that for

the bending moments' expressions, the two theories are exactly the same, whereas for

the transverse shear resultants, if we let K -- 5/6 in Mindlin's expressions, we arrive

at the identical expressions of Reissner's expressions.

1.2.2.5 Governing Equations

Using the same equilibrium equations for stress resultants, for q = 0, we have

01_[ x O_xy

ax + 0y - Qx = 0,

OMy OMxy
by + Ox - Qy = 0 ,

17



OQ× 8Qy _
_× +_ -O. ( 1.33 )

Now substituting ( 1.32 ) into ( 1.31 ), eliminating the quantities ¢x and Cy from

these equations, and taking into account the last equation of ( 1.33 ), we obtain

02w 02w h 2 0Qx

Mx=-D( --_x2 + v -- ) +0y 2 5 0x '

My =- D ( O2w + v o2w h 2 OQy0y ) + 5 0y '

c92w h 2 OQx cgQy
Mxy=(l-v)D _ " 10 ( -_" + --_-)" (1.34)

Substituting these expressions in ( 1.34 ) into the first two equations of ( 1.33 ), the

following results can be obtained

h 2
Qx - ']-0- V2Qx = - D

0(w)
0X

h 2 0 ( Vw )
QY " -T'0- V2QY = " D cgy ( 1.35 )

Observing the expressions ( 1.34 ) and ( 1.35 ), for the particular case of h ---* 0, that

is, of infinitely thin plates, the foregoing set of five equations gives the corresponding

expressions in classical bending theory.

Introducing a new stress function ¢, after some manipulations ( see [ 15 ] for

details ) the more convenient form for the governing equations can be obtained as

follows

?4w----0,

?2¢ _ I___0 4) = 0
h"

( 1.36 )

where

18



Qx=_ D (9 ( _ ) 0¢
0x + -W_ '

Qy=-D 0(_w) _]_ c9_
Oy 0y " ( 1.37 )

From equations ( 1.34 ) the expressions for Mx, My and M×y can be obtained. For

given boundary conditions, the plate bending problem can be solved for various

specific case.

1.2.3 A _ Higher-order plate theory

1.2.3.1 The Assumed Displacement Field

In this simple higher-order plate theory, the primary assumptions based on

the displacement field [ 11] in absence of the time parameter t, are the following:

u(x,Y,Z)=Z¢× (x,y)+z2¢x(x,y),

v (x, Y, z ) = z Cy (x, y ) -t- z2 Cy ( x, y ),

w(x,y,z)=w(x,y). (1.38)

As we can see in the sequel, these assumptions allow for the nonuniform shear stresses

in the thickness direction of the plate, as well as the possibility of satisfying shear-free

boundary conditions ( 1.3 a ) on the surface of the plate at z = 4- h/2.

Observing the boundary conditions

axz (x,y, 5= h/2) = 0,

( ×, y, + h/2 ) = O. ( 1.3 a )

for an isotropic plate and possibly for an orthotropic plate, these conditions are

equivalent to the requirement that the corresponding strains are zero on these

surfaces. Then, we have
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7xz(x,Y, + h/2)--=0,

7yz ( x, y, + h/2 ) = 0 . (1.39)

From the strain-displacement relations and expressions ( 1.38 ) we find

Ou Ow _ z2 Ow
7xz- Oz + -_-- Cx + 3 Cx + Ox '

Ov Ow z2 Ow
7yz-- 0z + _ Cx + 3 CY + bx (1.40)

Thus using ( 1.2 ) or ( 1.39 ), we obtain

Cx=- 4_h- (¢x+ _),

. 4 _gw
¢Y-- 3h 2 ( Cy + _ )" (1.41)

Then, the displacements in equation ( 1.38 ) become

u=z[¢x- 4 z2 0w
3 h 2 (¢x+--O_)]'

v = z [ Cy 4 z 2 Ow
" 3 h 2 (¢yJC'-_--)],

w=w(x,y). (1.42)

These are the lowest order expressions antisymmetric in z which can be made to

satisfy the shear-free conditions on z = + h/2. Also notice that there are still three

unknown functions, Cx, Cy and w.

1.2.3.2 The Strain Field

Introducing the following notation for convenience

2O



oq'Cx kx(2 ) _ 4 O'¢x 02¢,.,
kx-- Ox ' --- 3h2-(_+_ )'

Ot,_y ky( 2 ) _ 4 OCy 02w
ky=-o---_, --- 3h_-(_+--0_-y2 ),

_l_y ) _ _qCy 0¢x 02_
Oq'¢x + kxy (2 = - h_- ( _ + +2 ),kxy = 0----_- Ox ' 3 Oy OyOx

O_ kxz(2 ) _ 4 Ow
kxz = Cx 4- 0x ' -- " _ (¢x + _),

Ow , kyz(2 ) _ 4 Ow
ky z = Cy -{- --_y -- h2 ( Cy -t- --_ ) •

(1.43)

The stain field associated with the displacement given by equations ( 1.42 ) is found

to be

Cx = z (kx 4- z2 kx (2)).

(y "- z ( ky + z 2 ky (2)),

_Z "-'- 0 ,j

7xy : Z ( kxy Jr Z2 kxy (2)) ; ( 1.44 )

"fXZ = kxz + z2 kxz (2)

7yz = kyz 4- z2 kyz (2) (1.45)

From the above expressions we can see that the in-plane strain will have the term of

z3 while the out-of plane strains will have the term of z2.
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1.2.3.3The StressField

As in Mindlin's theory, therearealsoinherentcontradictions in the transverse

stress expressions in this displacement based theory. If we use constitutive equation

( 1.9 ) to obtain the stress field, the transverse stresses _×z and _yz will have the term

of z3, the same order as 7xz and 7yz. On the other hand, if we use equilibrium

equation from elasticity in deriving the trxz and _ryz, observing that the in-plane

stresses have the term of z 3, we would have a quadratic expressions of axz and Cryz.

1.2.3.4 Plate Constitutive Equations

Substituting expressions ( 1.44 ) into equation ( 1.9 ) and performing the

integration from z ---- -h/2 to z = + h/2, the following equations are obtained

between the moment resultants and the plate - displacement components:

{ Cm } :[CD]{ C k }, (1.46)

where

E JD vD 0 D 1 vD z 0

CD = vD D 0 vD 1 D 1 0 ,

0 0 D (l-v)/2 0 0 Dl(1-v)/2

C m 1My ,

Mxy

C k

kx

ky

kxy

kx (2)

ky (2)

kxy (2]
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D = E h 3 D1 = E h 5
12 ( 1- u 2) ' 80 ( 1- u 2 ) (1.47)

In like manner, substituting expressions ( 1.45 ) into equations ( 1.9 ) performing the

same integration, we arrive at the expressions:

kxz

[ ] i1 0h2/i 0kyQxchQy 0 1 0 h2/12 kxz (2)

kyz (2)

(1.48)

Notice that, due to the high - order terms introduced in the displacement field, as

expected there are more terms involved in this plate constitutive equation, which

differs greatly from the first-order theory.

1.2.3.5 Governing Equations

Using the standard plate theory approach, the stress resultants must satisfy

the equilibrium equations as expressed before

0Mx 0Mxy
0x _- 0y - Qx = 0,

0My OMxy
0y + 0x -Qy-'O,

0Q× 0Qy _
0x +--_- -0. (1.49)

Substituting ( 1.47 ) and ( 1.48 ) into the above equations, the governing equations

can be obtained for w, Cx and Cy.
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1.3 TRANSVERSESHEARDEFORMATIONPLATE THEORIES

..... LAMINATED OR HETEROGENEOUSORTHOTROPICPLATE

In the last section, three transverseshear deformationplate theoriesare

studied for homogeneousisotropic plates. In this section these theorieswill be

extendedto dealwith platesthat arenon-homogeneousin the thicknessdirection.The

non-homogeneityof the plate maybeof two types

( a ) theelasticmodulivary continuouslyin the thicknessdirectionof the so
called " heterogeneousplate";

( b ) thin homogeneouslayersof differentelasticpropertiesareassembledto

form a "laminatedplate" in whichthe moduliarepiecewiseconstant.

It will be shownthat thesetwo typesof nonhomogeneousplate problemscould be
solvedin basicallythe samemanneras the so called "single layer laminatedplate

theory". In the caseof a nonhomogeneousplate, the stiffnessmatrix is derivedby

continuousintegration through the thicknessfor a heterogeneousplate and by
stepwiseintegrationfor a laminatedplate. In this study only laminatedplateswill be

considered.The techniquecouldeasilybeextendedto heterogenousplates.

The laminatedplate under considerationconsistsof an arbitrary numberof

thin bonded orthotropic layers, with a total thickness h. In the "single-layer"

laminated plate theory we assume the individual lamina is elastic and the laminae are

perfectly bonded along interfaces. Cartesian coordinate system is used with the z = 0

and z = h referred to lower and upper surfaces of the plate and cylindrical boundaries

fb( x,y ) = 0 are defined by plane curves parallel to the x-y plane. As before, the top

and bottom surfaces of the plate are assumed to be free of shear stresses but

subjected to transverse normal stress, as follows:

_xz ( x, y, 0 ) = 0 ,

ayz (x,y,O) = O,

axz (x,y,h) = O,

ayz (x,y,h)-- 0 ; (1.5o)

az (x,y,O)---- O, _rz (x,y,z) = Pz- ( 1.51 )

24



Note that the lower surfaceof the plate is chosenas z "=-0 planewhich is call

"referenceplane". For a symmetricallaminated plate, for convenience,we usually

choosethe symmetry plane, the midplane, as the referenceplane. However,for

unsymmetricallaminatedplate any planeparallel to the plate canbe chosenasthe

referenceplane( in practicethe lowersurface,the uppersurfaceor the neutral plane

of the plate). wechoosez - 0 asreferenceplanebecauseit is a generalform for both
laminatedplateandheterogeneousplate.

It will alsobe shownin this sectionthat the asymmetryin compositionand

geometrywill introduce a coupling phenomenonbetweenbending and stretching

whichwasstudiedby Reissnerand Stavsky[ 16 ] and [ 17 ] in conjunctionwith the

classicalbendingtheory. By assumingthe symmetricallaminatesthe bendingand

stretchingproblemcanbedecoupledwhereasthe problemof unsymmetricallaminates

are inherently coupled.In this sectiononly two displacementbasedtransverseshear

deformationtheoriesarestudiedfor the laminatedorthotropicplate. Becauseof the

inconsistencyin the displacementfield, the Reissner'sstressbasedplate theory will
not beconsidered.

1.3.1A (_eneral Linear Laminated or Heterogeneous Plate Theory:

.......... An Extended Mindlin's Approach

1.3.1.1 The Assumed Displacement Field

The general linear laminated plate theory is attributed to Yang, Norris and

Stavsky [ 9 ] who extended Mindlin's theory for homogeneous plate [ 8 ] to laminates

consisting of an arbitrary number of bonded anisotropic layers and to heterogeneous

plates. The assumed displacement field is:

u (x,Y, z) = u0 (x,Y) + z Cx (x,Y) ,

v (x,Y, z ) = v0 ( x, Y) + z Cy (x,Y) ,

_(x,y,z) = w(x,y), (O<z<h),

(1.52)

25



whereu, v, and w are the displacement components in the x, y and z directions,

respectively, and u 0 and v 0 are the displacement components in x and y directions of

reference plane ( i.e. z -- 0 plane ). Note that these relations involve combined action

of bending and extension which characterizes the general behavior of laminated and

heterogeneous plates shown by Reissner and Stavsky [ 16 ], [ 17 ]. Comparing to the

corresponding equations for a homogeneous plate, we can see that instead of three

plate - displacement components here we have all five components u0, v0, Cx, Cy and

w as the unknown functions.

1.3.1.2 The Strain Field

Again, using the standard linear elasticity approach, the strain field can be

obtained from ( 1.52 ) as follows:

0u 0% OCx _
¢x-- 0x = _ + z 0----_-- ex0 + zkx ,

Ov OVo_ OCy _
ey =--_y - Oy -{- z a-"_- eY° q- zky ,

_ 0u 0v 0% 0% OCx 0¢y
vxy--_- + --yZ = -E_-y+-_- + z ( -_--+ -E_x )= _xy0 +zkxy,

(1.53)

where

"_'yz :-'_- "]- y

_Z _0 _

= Cx + _x "- 7xz0

"- CY + "_- -- "Yyzo

c_uo #v o Ou o Ov o
(xo--SX ' (yO- Oy ' "fxyO = Oy + OX

( 1.54 )

(1.55)
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0¢ OCx OCy
0¢x ky , kxy -{- (1.56)

kx = -'0--_" ' : 0y -- 0y 0x

Besides the coupling characteristics the strain field has the same features as in the

homogenous case.

1.3.1.3 Constitutive Equations for Any Layer

Assuming the generalized Hooke's law for the stress - strain relations, the

constitutive relations of orthotropic materials for any layer are given by:

[CE] {n}, ( 1.57 a )

where

CE=

i

C:: C:2 C:3 0 0 0

C2: C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66
D

o-x I

°'z I

°'yz ]

O'xz

. °'xY J

_x

ey

Cz

7yz

7xz

7xy

(1.57b)
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Observingthat C O _- Cji , there are only 9 independent constants. For a

heterogeneous plate, these 9 elastic coefficients cij could be specified as functions of z

but do not vary in the x, y directions. Following [ 18 ], for future convenience, we

now employ a contracted notation to put the constitutive equation ( 1..57 ) into the

form:

where

o.i = Cij cj , (i,j = 1,2,3), (1.58)

°'1 "-" o.x _ 0"2 -----Cry , 0"3 -----o.z ,

and the engineering strain ¢j are defined in an analogous manner. For the equation

corresponding to i ---- 3 we then solve for e3 and resubstitute it into equation ( 1.58 ),

the results will be

Ci3
o.i= Qia ca-{- _ o.3, (i- 1,2,3), (a- 1,2), (1.59)

where

Qia ---- Ci_ Ci3
- C33 C3a. (1.60)

The form of the constitutive relations given by equations ( 1.59 ) will be used in

subsequent work. Integrals involving 0"3 will be dropped because for the thin plate in

comparison with the other stress components o.z may beneglected.

Again as addressed in the subsection ( 2.1.4 ) the inconsistency for transverse

shear stresses is still there.

1.3.1.4 Plate Constitutive Equations

The plate stress resultants and stress couples are defined as follows:

(Nx, Ny, Nxy )= I_ (o.x,o.y,o.xy) dz,

(Qx, Qy)-- 0 (o.xz'o.yz) dz,

(1.61)

(1.62)

28



( Mx, _'_y, _"[xy ) =

rh
( ¢rx, Cry, O'xy ) Z dz . ( 1. 63 )

JO

Substituting ( 1.53 ) and ( 1.54 ) into ( 1.57 ) and ( 1.59 ) , and integrating,

according to the definition ( 1.61 - 1.63 ) we obtain the plate constitutive equations as

follows:

{Cm}= [CC-] {Cc}, (1.64 a)

where

CC =

Ali A12 0 B11 BI2 0

A21 A22 0 B21 B22 0

0 0 A66 0 0 B66

B11 B12 0 Dzz D12 0

B21 B22 0 D21 D22 0

0 0 B66 0 0 D66

C m =

Nx

Ny

Nxy

Mx

My

Mxy

Cc --

- exo ]

(yo /

"Yxy 0 I

kxjky

k×y

, ( 1.64 b)

and

[Qx]r 1[, A44 0 7yz0

QY L o Ass 7xzo
( 1.65 )

where the reference plane strains (xo , ey 0 , and 7xy0, reference bending curvatures kx,

ky and kxy and transverse shear strains 7xzO , 7yzo are defined in expressions ( 1.55 ) ,
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( 1.56) and ( 1.54) respectively,andfor laminatedplate

(A,j,B,j,D,j)= _i:: Qu(k)(1, z, z2) dz,
-- -1

(i,j=l, 2),

(1.66)

(A66'B66'D66)= k_li::= -1 C66(k)(l'z'z2)dz'
(1.67)

,t? <'>( A44, A5S ) = ( C44 (k), C55 ) dz .

1

(1.68)

j(k) (k)where Q i and C m m ( m ---- 4, 5, 6 ) are the material constants defined in

( 1.60 ) and ( 1.57 ) for the kth layer of the n-layer laminated plate.

1.3.1.5 Governing Equations

The stress and moment resultants must satisfy the

equations:

0Nx ONxy
OX -]- Oy -0,

(gNxy 0Ny
_× +-_- = 0,

following equilibrium

0Mx 0 h_Ixy

8-_ + 0y

OMy OMxy
Oy + 0x

OQx 0Qy _
a--;- + D-7 -o,

_-Qx=0,

---Qy=O,

3o

(1.69)



whereit is assumedthat q = 0.

Substitutingequations( 1.63) and ( 1.64) into ( 1.69) the governingequationscan

thenbeobtainedfor thefive unknownfunctionsu0,v0, Cx,Cyandw.

1.3.2 A Simple-hiKher-order

......... Reddy's Approach

1.3.2.1 The assumed Displacement Field

This simple-higher order laminated plate theory is due to Reddy [ 11 ] which is

based on the displacement field:

80J

)],

v(x,Y,Z)=V0(x'Y)-t-Z[¢Y--'_(_ )2(¢y+ _ )]'

w(x,y,z)=w(x,y). (1.70)

Comparing to ( 1.42 ) for the homogeneous case, besides the reference plane

displacement u0 and v 0 which is due to the bending and stretching coupling, the two

assumed displacement fields have the same z dependence. Here we have chosen the

midplane of the plate as the reference plane for convenience. Again these are the

lowest order expressions which can be made to satisfy the shear-free conditions on the

lower and upper surfaces z = + h/2 with the same five unknown functions u0, v o, Cx,

¢y and _.

1.3.2.2 The Strain Field and Constitutive Equations

Introducing the same notations as in the expressions ( 1.43 ) and the reference

plane ( here the midplane ) strains as defined in ( 1.55 ), the strain field associated

with the displacement given by equations ( 1.70 ) are
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q

e'x ---- _'x0 + Z ( k x Jr z 2 kx (2)),

ey -- ey 0 Jr z ( ky -I- z 2 ky (2)) ,

Cz----0; (1.71)

"fxy ---- "Yxyo Jr z ( kxy Jr z 2 kxy (2)) ,

"YXZ kxz Jr Z 2 kxz (2) "- _xzO '

_yz kyz + z2 kyz (2)
= -- "(yzO • (1.72)

Besides the coupling phenomenon these strains have the same feature as discussed for

the homogeneous case.

The constitutive equations for each layer will be the same as expressed in

equations ( 1.57 ) and ( 1.59 ) because the physical properties of the laminated plate

will remain the same regardless of what plate theory is used.

1.3.2.3 Equilibrium Equations and Plate Constitutive Equations

In this subsection we consider the plate constitutive equations and the

equilibrium equations at the same time. Because two approaches are used to obtain

the plate equilibrium equations which require different plate stress and moment

resultants.

( a ) Standard Plate Equilibrium Equations

As generally used for the plate problem, the standard equilibrium equations

[ 15 ] are

0Nx 0Nxy
-E + _-- = o,
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(_Nxy (_Ny __
0x +-_- - 0,

OMx O_xy

Ox + ay - Qx = O,

0_'1y 0]_xy
cgy + Cqx - Qy :0,

OQx 0Qy
ax +-_- = 0. ( 1.73 )

These equations have been used by Levinson [ 12 ] for a homogeneous plate.

Corresponding to the set of equilibrium equations ( 1.73 ) , defining the stress

resultants and stress couples Nx, Ny, Nxy, Qx, Qy and Mx, My, Mxy as in the

expressions ( 1.61 ), ( 1.62 ) and ( 1.63 ), we could arrive at the same type of plate

constitutive equations as expressed in ( 1.64 ) and ( 1.65 ), where the coefficients A U,

Bij and Cij are defined exactly the same as in the expressions ( 1.66 ) - ( 1.68 ). Of

course, the correction factor K is not needed any more.

( b ) Using the Principle of Virtual Displacement to Derive the Plate Equilibrium

Equations:

As could be seen later, the equilibrium equations ( 1.73 ) are variationally

inconsistent with those derived from the principle of virtual displacements for the

displacement field used in ( 1.70 ), because ( 1.73 ) is the equilibrium equations

corresponding to the first-order plate theories. By using the equilibrium equations

( 1.73 ), the higher-order terms of the displacement field are accounted for only in the

calculation of the strains but not in the governing differential equations. Reddy [11]

corrected these equilibrium equations by deriving the plate equilibrium equations by

means of the virtual work principle.

The principle of virtual displacement can be stated in analytical form as

+/,/2 I0 = I [ 0"x _¢x Jr- cry _(;y "l- O'xy _"Yxy Jr O'yz 6"/yz Jr O'xz _")'xz ]dA dz
-hi2

+ I q_wdxdy , (1.74)
/]
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where h f2 is the volumeof the laminatedplate and 6 denotes the variational

symbol.Substituting the strains from ( 1.71 ) and ( 1. 72 ) into ( 1.74 ), for example,

we have for the first term:

S+,,,:S Sr+,,,=c,× 64× dAdz = ax _cxdzdA
-hi2 .q f2 °-hi2

[+h/2---- e,x 6 [ex0 + z (kx -[- z2 kx (2)) ] dz dA
a-h�2

-f r+,,,:ax z dz ]
= n { t/%o[ -h/_ o'xdz ] +tSk× [_-h/2

+h/2 o"x z 3 dz] } dA
Jr /_kx(2) [-'-h/2

= f O6u0 f 0,5¢xn fix N× dA + ff_- Mx dA
n

+ f [ 4 age× O2 Sw ) ] Px dA (1.75)n 3 h 2 ( 8x + 8x 2

where

, +h/2

(Nx, Mx, P×y ) = j a× (1, z,z 3) dz. (1.76)
-hi2

Thus, defining the following stress resultants

( Nx, Ny, Nxy ) =

( Mx, My, Mxy ) =

( Px, Py, Pxy ) :

+h/2
-h/2

,+h12

J-hl2

s2:

( 0"x , O'y , O'xy ) dz

( o"x , O'y , O'Xy ) Z dz

( O"x , O'y , O'xy ) Z 3 dz
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+h/2
( Qx, Qy ) = -'-h/_

+hi2
( Rx, Ry ) = -'-h/2 ( 1.77 a - e )

equation ( 1.74 ) can be written as

0 f Nx 8 $u 0 O 6¢x ____A___4 0 6¢x O2 6________n _-x + M× 8x + Px [- 3h 2 ( clx + Ox 2

8 2 60.,+ Ny O_v 0 86¢y _ 4 06¢y +
0y + My Oy + Py [ _ ( Oy _y2

+ Nxy ( cq 6u 0 0 6v 0 0 _¢x 0 6¢y
8y + Cqx ) + Mxy ( Oy + Ox )

)]

)]

4 0 (_¢x 0 _¢y 0 2 _w

+ Pxy[- 3h 2 ( Oy -J- 0x +2 _) ]

+ Qy ( 6 Cy + 8 _w 4 c9 6_
Oy ) + Ry {- h2 (6¢y + Oy )

+ O 5_ 4 0 6w
+ qx ( 6 ¢× --E-)+R×[- h2 ( 6¢x + a---7- ) ] + q 6_, } dx dy.

(1.78)

Integrating the expressions in equation ( 1.78 ) by parts, and collecting the

coefficients of _u, _v, 6w, 5¢× and _¢y, for q --0 we obtain the following equilibrium in

the domain Y2:

_U :
ONx 8Nxy

ax +-_--=o,

0Nxy 0Ny

0x + 0--y- = 0,
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6_2 :

OQx 0Qy 4 ORx bRy
+-sV -$x- + -sV )

_2P x
+ 5- -h2( +

82pxy 02py

2 Oycqx + 0y----_ )
=0.

0Mx 0Mxy ___ 45¢x: 0x + 0y - Qx + ax _ (

Oh'1xy OMx 4 4
6¢Y: O× +DV -Qy + --_Ky _1-_- (

0Px 0Pxy
-_-x +-_-T)=0,

0Pxy 0Py
--_ + -_-) = 0.

( 1.79 a - e )

Comparing to equations ( 1.73 ), the underlined terms are the consequence of the

higher-order terms in the displacement expressions ( 1.70 ).

Corresponding to the equilibrium equations ( 1.79 ) the plate constitutive

equations will have the following form:

{CM}= [CC] {CE}, (1.80a)

where

CC =

im

All A12 0 Bll BI2 0 Ell El2 0

A21 A22 0 B21 B22 0 E2z E22 0

0 0 Ass 0 0 B66 0 0 E66

Bzl B12 0 Dll D12 0 F11 F12 0

B21 B22 0 D21 D22 0 F21 F22 0

0 0 B66 0 0 D66 0 0 F66

E n E12 0 Fll F12 0 Hzl HI. 2 0

E21 E22 0 F21 F22 0 H21 H22 0

0 0 E66 0 0 F66 0 0 H66
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CM = E Nx Ny Nxy Mx My Mxy Px Py Pxy -IT,

CE = E ex0 Cy0 7xy0 kx ky kxy kx (2) ky(2) kxy(2)_ T,

( 1.8o b )

and

{CQ}= _CCR_ {CK) , ( 1.81 a )

where

CCR =

A44 0 D44 0

0 A55 0 D55

D44 0 F44 0

0 D55 0 F55

CQ=

Qx

Qy

Rx

Ry

CK =

7yz0

7xz0

kyz (2)

kxz (2)

( 1.81 b )
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whereA ij , B ij , etc. , aretheplate stiffnesses,definedby

( Aij,Bij,Dij,Eij,Fu,Hi j )

.+h/2-'- Qij (
-h/2

l,z, Z 2 , Z 3 , Z4_ Z 6 ) dz ( i,j =1,2),

( A44 , D44 , F44 )

+h/2: C44 (

J-h�2

1, z 2 , z 4 ) dz ,

( Ass, DSS, F55)

.+h/2

---- J C55 ( 1,z 2 , z 4 ) dz
-h12

( A66 ,B 66 ,D 66 ,E66 ,F66,H 66 )

.+h/2

= J C66 ( 1,z,
-hi2

Z 2 , Z 3 , Z 4 , Z 6 ) dz .

( 1.82 a- e )

1.3.2.4 Governing Equations:

For each set of equilibrium equations ( 1.73 ) and ( 1.79 ), substituting the

corresponding plate constitutive equations, the governing partial differential equations

in terms of the unknown functions u0, v0, w, Cx and Cy can be derived. It must be

emphasized that in solving the governing equations derived from ( 1.79 ), the

corresponding boundary conditions, which are also derived from the principle of

virtual displacements, must be used. Upon solving the governing equations the five

unknown functions u0, v0, w, Cx and Cy can be obtained and the corresponding

elasticity problem can be solved.
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Chapter 2. Laminated Plates with a Through Crack

2.1 INTRODUCTION

In chapter 1, prior to treating the more complicated problem of a laminated

plate containing imperfections or cracks, a brief review of several commonly used

transverse shear deformation plate theories were presented. In this chapter, the focus

is on the laminated and heterogeneous plates containing a through thickness crack.

As we know the primary purpose of the stress analysis in structures is to

study their strength and failure. In many cases the failure is attributed to the growth

of cracks or crack-like flaws that exist in the structure. This requires, in addition to

the application of standard failure theories specified by the traditional strength of

material, the treatment of the problem of acceptance and safety from the viewpoint of

fracture mechanics. Presently no complete solution of the plates failure problem in

non-homogeneous or anisotropic plates is available because of the inherent difficulties

in stress analysis and material characterization of such laminated structures. During

the past two decades many investigators have studied the stress state in the

immediate neighborhood of the crack tip in a homogeneous isotropic medium since the

local fracture of the structure appears to be governed mainly by this stress field. The

stress intensity factor, which represents the singular behavior of the stress state near

the crack tip, has been used quite effectively as the primary load factor in the fracture

analysis. Moreover, the knowledge of the stress intensity factors is a prerequisite for

the fracture control, the residual strength, and subcritical crack growth analysis. The

main interest in this chapter is in obtaining the stress intensity factors in laminated or

heterogeneous plates containing a through thickness crack.

The orthotropic laminated plate, which could represent laminated composites

or bonded materials, is composed of thin homogeneous layers of different orthotropic

elastic properties. The heterogeneous plate may have continuously varying properties

through the thickness. By using the so called "single-layer laminated plate theories"

discussed in Chapter 1, we will assume that the individual lamina are elastic and are

perfectly bonded along interfaces. Global laminated properties are obtained by

integrating lamina properties through the thickness. The general linear laminated and
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heterogeneousplate theorydevelopedby Yang,Norris and Stavsky[7] and examined

in Chapter 1 is used here, becauseit is believedthat this theory is the best

compromisebetweensimplicity and accuracy.Someobservationsin this regard are

given later in this chapter. The governingequationswhich are a set of partial
differential equationswill be solved by using Fourier Transformation technique.

Finally a pair of singularintegral equationswill bederivedto solvethe relatedmixed

boundaryvalueproblem.Then the stressintensityfactorscanbeobtainedfor various

geometriesand bendingor membraneloading conditions.Only the mode I crack

problemwill beconsidered.
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2.2FORMULATION OF THE PROBLEM

The problemof interestis shownin Figure2.1.The "infinite" laminatedplate

consistingof an arbitrary numberof bondedorthotropic layerscontainsa through

crack of length 2a. The total thicknessof the plate is h. The systemof coordinates
and the definition of the variablesare definedin the sameway as in Chapter 1,

particularly as in the generallinear first order plate theory describedin subsection

( 1.3.1 ) of Chapter 1. We also assumethat the coordinatesx, y, and z axes

correspondto the princopleorthotropyaxesof eachlayer.

2.2.1Fourier_ Transformation

Following the general linear laminated plate theory reviewed in ( 1.3.1 ) of

Chapter 1 the assumed displacement field is :

u (x,y,z) = Uo (x,Y) + z Cx (x,Y) ,

v(x,y,z) =Vo(x,Y) +ZCy (x,Y),

w(x,y,z) = w(x,y), ( O<z<h),

(2.1)

where u, v, and w are the displacement components in the x, y and z directions

respectively, u 0 and v 0 are the displacement components in x and y directions of

reference plane ( i.e. z -- 0 plane ) and Cx and Cy are the rotations of the sections of

x----constant and y=constant.

By defining the reference plane strains exo , ey 0 , and 7xy0, reference bending

curvatures kx, ky and k×y and transverse shear strains 7xz0 , 7yz0 as follows:

0u 0 _ 0% Ou0 Ov0
exO -- Ox ' eYO -- 0"--7 ' 7xyO-- _y + O_ '

O¢X 0¢y
8¢X ky 8¢ kxy +

kx -- -o_x , -- _ ' -- Oy Ox '

"/'xzO '¢x + O_X "/'yzO = CY + OW---- ' Oy '

(2.2)
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theplateconstitutiveequationscan be written in the following form ( see 1.64 )

{cm}= [c¢] {¢+}, (2.3a)

where

CC =

-- m

AIz A12 0 Bzz Bz2 0

A21 A22 0 B2z B22 0

0 0 A66 0 0 B66

B11 BI2 0 D11 D12 0

B21 B22 0 D21 D22 0

0 0 B66 0 0 D66

C m _--

Nx I Ex0

Ny ! Cy o

Nxy 17xy o

Mx i kx

My ky

Mxy kxy

, (2.3b)

and

1[A44 0 7yz0 .

I 0 Ass 7xzO
(2.3c)

where the stiffness constants Aij, Bij and Dij ( i, j = 1, 2 ) are defined in ( 1.66 ) and

Aii( i = 4, 5, 6 ) in ( 1.68 ) and ( 1.67 ). For example

I hk (k)-- Qij z dz,
BiJ k=l hk-1

(i,j = 1,2),

(2.4)
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for a laminatedplateof n layers and Qij of each layer are defined in ( 1.60 ).

Note that the bending - membrane coupling phenomenon, which was first

studied by l_eissner and Stavsky with classical bending theory, can be seen easily in

the expressions ( 2.1 ) and ( 2. 3 ). Unless Bij ( i, j -- 1, 2 ) are all zero, the problem

will remain coupled. If the plate is symmetrically layered, and taking the plane of

symmetry ( i. e. the midp|ane ) as the reference plane it may be shown that the Bij's

( see expression ( 2. 4 ) ) are all zero, and consequently the problem becomes

uncoupled.

For convenience, for this general linear laminated plate theory the five

unknown functions, u0, v0, w , Cx and Cy, are defined as the "displacement" vector

[ U ] as follows

(2.5)

Substituting ( 2.3 ) into plate equilibrium equations ( 1.69 ) and considering ( 2.5 ),

the governing partial differential equations in terms of the unknown functions u i are

found to be

AllUl,xx -J- ( A12 + A66 ) U2.yx -j- A66 Ul,yy

+ Bll U3.xx + ( B12 -{- B66 ) U4,xy + B66 U3,yy m 0,

A66U2,xx + ( AI2 + A66 ) ul,xy -J-A22 U2,yy

._LB66 U4,xx + ( B12 + B66 ) U3,xy + B22 U4,yy __.0,

BllUl,xx + ( B12 + B66 ) U2,yx + B66 ul,yy

+ Dll U3,xx + ( D12 + D66 ) U4,xy + D66 U3,yy - A55 n 3 - A55 u5,x = 0,
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B66u2,xx Jr ( Bz2 + B66 ) ul,xy + B22 U2,yy

+ D66 U4,xx + ( D12 Jr D66 ) U3,xy + D22 U4,yy

A44 U4,y .-_ A44_5,yy _ A55 u3, x -4- A55 U5,xx -_- 0.

- A44 u 4 - .A44 U5,y = 0_

(2.6a-e)

Taking the Fourier Transforms of equations ( 2.6 ) and defining

I °° -it_yui = ¢i ( x, a ) e d_,
- CO

(2.7 a)

oo i_y¢i = u i (x,y) e dy,
- O_

i = 1, . .... 5,

(2.7b)

we arrive at the following ordinary differential equations:

where

CA _ -t- CB ,_ -4- CD¢ = 0,

(2.s)

E_]=E _1 ¢2 ¢3 ¢4 ¢5 IT,

= @,xx , ,b = ¢,x ,

CA =

All 0 Bll 0 0

0 A66 0 B66 0

Blz 0 Dzz 0 0

0 B66 0 D66 0

0 0 0 0 -A55
w

(2.9)
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CB=(-i_)

0 AllnUA66 0 BI2_-B66 0

AI2JrA66 0 BI2-I-B66 0 0

0 B12+B66 0 D12+D66 - ASS --_

Ble+B66 0 DI2+D66 0 0

0 0 -As5 / 0 0

CD ----

-e2A66

0

-(_2B66

0 -e2B66 0 0

-(_2A22 0 -(_2B22 0

0 -(_2D66+A44 ) 0 0

0 -c_2B22 0 -(c_2D22+A44) ic_A44

0 0 0 io_A44 a2A44

( 2.11 a-c )

Upon determining the eigenvalues s i and the eigenfunctions Cij of equations of ( 2.8 ),

observing that ¢i ( i = 1,.... 5 ) must be finite when x---_ c_, and thus taking the

eSi xcoefficients of the terms having with Re(si)>O to be zero, we finally obtain the

solutions of equation ( 2.8 ) as:

5 eSjX
¢i = _] Cij Aj( o_ ) , Re(sj)<0,

j=l

(id) = 1...5.

( 2.13 )

Thus, the unknown displacement components u i can be expressed as

oo -layui =@ ¢i (x, a ) e da
- OO
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c_ 5 eSJx - i a y__ I E Cij Aj( a ) e dc_,

---_-_- -_ 3=1 (i,j)----1, .... 5,

( 2.14 )

where Aj, ( j = 1, .... , 5 ) are the unknown functions which can be obtained by

applying the boundary conditions. Substituting ( 2.13 ) into expressions ( 1.53 - 1.56 )

we obtain the strain components. Furthermore, substituting these into plate

constitutive equation ( 2.3 ), the relevant expressions of stresses, moments, and

transverse shear resultants can be obtained:

2.2.2 Boundary Conditions

Assuming that x = 0 and y ---- 0 are planes of symmetry with respect to

loading and geometry and that the problem has been reduced to a perturbation

problem in which the crack surface stress and moment resultants are the only nonzero

external loads, the boundary conditions may be expressed as ( Figure 2.1 ):

Nxy (0 +,y) = 0,

Mxy ( 0 +,y) -- 0,

Qx (0 +,y)--0, (-oo <y< o0),

( 2.14 a-c )

Nx (0 +,y)-fl (Y),

u 0 ( 0 +, y ) = 0,

lY[<a,

IYI> a,

Mx (O+,y)-- f2 (Y),

Cx (0 +,y) = O,

lYI< a,

[y[>a.
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Three of the unknown functions A1,...., As maybe eliminated by using the
homogeneousconditions( 2.14a-c ). The remainingtwo are then obtainedfrom the

mixedboundaryconditions( 2.14d,e).

2.2.3 Singular Integral EQuations

To solve this mixed boundary value problem, we define the new unknown

functions as follows:

9
c3y

Cx (0, y) = G 2 (y),

(-co < y < c_),

( 2.15 )

0

Oy
_u0(0, y)=Gt(y),

(-oo <y < oo).

(2.16)

By using ( 2.4 ) and ( 2.13 ), it can be shown that

G2(Y)=_y Cx(0, Y)= Au3

c_ 5 eSj x - i _ yLim 1 _ C3j Aj( a ) (-i a ) e da,
x_0 2 _r - oo j=l

5 I °¢ io_yE CzjAJ(a) (-ia) : G2 (y)e dy

j:l "

a= G2(t)e iat dt =g2 (a),
- a

( 2.17 )
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ol y -Ayu0 0y)=Ayul

Lim 1 "|c°
x_O 2 _r J_

5

E % %( _ )
j=l

e six ( - i a ) e - i _ y d_,

5 oo

CzjAj(a)(-ia)= I
j=l - oo

Gl(y)e iaYdy

&= Gl(t)e iatdt=gl((_).
- a

(2.1s)

To obtain the unknown functions A i ( a ), ( i = 1, .... 5 ), in terms of gl and g2, the

homogeneous boundary conditions ( 2.9 a-c ) are applied first. Starting with

Nxy (0 +,y)-- 0,

and by substituting ( 2.13 ) into ( 2.3 ), we obtain

Nxy = A66 Ul,y -_ A66 U2,x -4- B66 U3,y + B66 U4,x

_ 5 six1 [ A66 _ CzjAj(a) e " (-ia)
2 7r - o¢ j=l

5 eSJX 5
+B66 X_ CajAj(a) (-ia)+ A66 _ C2jAj(

j=l j=l
(sj)

5

"4- B66 E C4jAJ((_) eSiX(sj) ] e-ieYde
j=l

(2.19)
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By inverting the Fourierintegral,wefind

[CljA66 (-ia) + C3jB66(-ia) + C2jA66sj
j--1

+ C4jB66s j ]Aj(_)=0.

( 2.20 )

Similarly, from

M×y (0 +,y)- 0 and Q× (0 +,y) = 0,

it can be shown that

[Clj B6B (-ia)-{- C3jD66(-ia)-{- C2jB66sj
j=l

+ C4j D66 sj ]Aj(e)=0.

(2.211

[C3jAs5-F Csj Asssj]Aj (a) = 0.
j----1

(2.22)

Solving the system of linear algebraic equations ( 2.17 - 2.18 ) and ( 2.20 - 2.22 )

Ai(a ) may be expressed as follows

Ai(a) = Qilgl (a)-F Qi2g2 (a)
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Ia Ia--Qil Gl(t)e iatdt -{- Qi2 G2(t)e iatdt,
-a -a

(i= 1,. ..... 5),

( 2.23 )

where Qil and Qi2 are the algebraic expressions from the solution of the equations

( 2.17-2.18 ) and ( 2.20-2.22 ) .

Substituting ( 2.23 ) and ( 2.13 ) into the strain field ( 1.53 ) - ( 1.56 ), and using

( 2.31 ), the resultants Nx and M x may be expressed as:

Mx = Bll ul, x + B12 U2,y -I- Dll u3, x + D12 U4,y ,

( 2.24 )

oc 5 eSjXMx-- 1 [ B12 _ C2jAj(a ) (-ia)
-- _ - c_ j=l

5 _jx
+ D_ _ % Aj( _ ) e

j----!

(-i a)-t- BII 5 eSjX% Aj(_ )
j=l

(sj)

+ D_

1
+ 2_

5 eSJx ict y
E C3jAj(a) (sj) ] e" do_
j=l

c_ i a (t-y)G 1 (t) dt H21 (a,x) e de
- O_

fa foo i (_ (t-y)G 2 (t) dt H22 (c_,x) e de ,
-a -O0

( 2.25 )
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H2k

5

j=l
[ BllClj sj q- B12 C2j ( - i _ ) + DllC3j sj

sjx
+D12C4j(-ia)]Qjk e ,

(k-- 1,2),

( 2.26 )

N x -----All Ul,x q- AI2 U2,y av BII U3,x q- BI2 U4,y,

(2.27)

sa fooNx-- 1 O 1 (t) dt Hll (a,x) e
-a -OO

ia ioo+ 21rl -a G2 (t) dt -oo H12 (a,x)

i O_ (t-y) d(_

i a (t-y)
e d_,

(2.28)

Hlk --

5

{ [AllCljsj+A12 C2j (-ia) + BnCajsj
j=1

+ B12 C4j (-ia)] Qjk
eSjx

(k=l, 2).

(2.29)

Observing expressions ( 2.25 ) and ( 2.26 ) and applying the mixed boundary

conditions ( 2.14 d, e ), we finally obtain two integral equations to determine the new

unknown functions G 1 and G 2 in the following form:
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I %(t)Lim

x--*0 - a j=l - oo

i c_ (t-y)
Hij (a,x) e dt_ =- fi (Y)'

( i= 1,2), lYl<a.

(2.30)

By further examining the functions Hij , it can be shown that they are bounded

everywhere for finite a. Therefore any possible singularity of the kernels in ( 2.30 ) at

y=t must be due to the behavior of H..(a,x) as a-*Too Note that H.. containsU " U
$-X

exponential damping terms of the form e 3 , where Re(sj)<0. However, since in the

limit x will go to zero, for y=t this damping does not insure the convergence of the

inner integrals in ( 2.30 ). The major difficulty in this problem, of course, is that the

functions si(x ) are not known explicitly in terms of a. For the purpose of examining

the singular behavior of the kernels in ( 2.30 ) and extracting the singular parts, all

one needs, however, is the asymptotic behavior of sj as I a I --*oe. Thus, from ( 2.8 )

- ( 2.11 ) it can be shown that for large values of I a I we have

sj( ) sj_ sj.____2
=-(s0+T+ _2 + ...... ),

(2.31)

where so is a constant.

Now using the relations ( 2.31 ) and separating the asymptotic values of Hij for large

I a l, the kernels in ( 2.30 ) may be expressed as :

oo i a (t-y) f °° HijOO i a (t-y)Hij (a,x)e da ----- ( u,x)e da
- OO - OO

where

oo+ [ HUoo( ,x) ] e
- OO

Hij °° is the asymptotic value of Hij for I a I --* co.

i _ (t-y) de ,
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The first term on the right- hand gives Cauchy-type kernels t 1 Y , and the second

integral is uniformly convergent for all t and y ( in which the limit x=0 can be

therefore be put under the integral sign ). After the asymptotic analysis and some

lengthy but straightforward manipulations the integral equations and the kernels may

then be expressed as follows:

Z ,lj (t)r -_ dt-t- Z
j=l - a j=l - a

klj (y,t) Gj (t) dt- fz (Y),

Z2 /_2____jTrI a Gj(t) dt q-_t-y Ia
j=l - a j=l - a

k2j (y,t) Gj (t) dt- f2 (Y),

( 2.33 a, b )

where /_ij ( ij = 1, 2 ) are material constants obtained from the asymptotic analysis,

fi ( Y ), ( i -- 1, 2 ) are defined by ( 2.14 d, e ) and the Fredholm kernels Kij are

obtained from

.__ I °° i o_ (t-y)kij (y, t ) -- [ Hij (c_,0)- Hij °° ( 0f, 0) ] e da ,
- OO

(i,j ----1,2 ).

(2.34)

From the definitions of G 1 and G 2 given by ( 2.15 ) and ( 2.16 ) it follows that (2.33)

must be solved under the following single - valuedness conditions

ia Gj(y) dy -- 0, ( i --.--1, 2 ).
- a

( 2.35 )

Note that, when the plate is symmetrically layered about the z = 0 plane, by

taking the plane of symmetry as the reference plane we find H12 --- H21 = 0, and

consequently P12 = /_21 = 0 and k12 = k21 -- 0. Thus, the bending and in - plane

stretching problems would be decoupled.
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2.3STRESSINTENSITY FACTORS

2.3.1 Solution of the _ingular Inte rg_!l EQuations

The two unknown density functions G 1 and G 2 can be obtained by solving the

singular integral equations ( 2.33 a, b ) numerically. The two most commonly known

numerical methods for solving such singular integral equations are Quadrature

method [ 19 ] and Collocation method [ 20 ], [ 21 ]. In this chapter, the singular

integral equations are solved by collocation method ( also called expansion method ).

To solved the integral equations:

_ plj ia G_(t ) ___ fa
j=l - a - _ dt + j=l - a klJ (y't) Gj (t)dt =fl (Y),

2 P2j fa G_(t) 2 la
j=l - a j=l - a

k2j ( Y, t ) Gj ( t ) dt = f2 ( Y ),

[y]<a,

( 2.33 a, b )

we first express the unknown functions in terms of their weight functions

Gi( t)=
g'-T'(t)

( a2 _ t2 )1/2

( 2.36 )

and then normalize the interval ( - a, a ) by defining

t--ar, (-a<t<a, - 1-<r < 1),

y ----as, (-a<y<a, - 1 <s < 1),
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fi(Y) = fi (s),

Gi(t)= gi(r)
( 1 - r2 ) 1/2 '

g--](t) = agi (r),

Lij (r,s) = akij (y,t).

(2.37)

By substituting ( 2.36 ) and ( 2.37 ) into ( 2.33 ), we obtain:

2 iaE Pl..___jTr gj(r )
j=l - a ( 1- r 2 ) 1/2( _r s)

dr +

E
j=l a

Llj (r,s) gj (r) dr =
B

fl (s),

2 P2j fa_ _ _
j=l

gj(r)

a (1-r 2)1/2( _r s)

dr +

E
j=l a

L2j (r,s) gj (r) dr = f2 (S),

Isl<l.

In applying the collocation method, we choose

(2.38)

N

gl (r)= E ajhj-l(r)'

j=l
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N
g2(r)= E bjhj-l(r)'

j=l

( 2.39)

wherehj ( r ) arelinearly independentcoordinatefunctionschosento "fit the curve"

and the aj and bj are coefficients to be determined. It is believed that the best choice

of hj ( r ) are orthoganol polynomials, because the coefficients show convergence as N

is increased (see [211 ).

Here, we let

hj_i(r) = T3_ i(r),

(2.40)

where Tj_ 1 ( r ) are the Chebychev polynomial of the first kind corresponding to the

weight function of expression ( 2.36 ). Note that these equations must be solved under

the following single-valueness conditions:

fa I 1 gl ( r )G 1 ( t ) dt = 0, or dr = 0,
-a -1 (l-r2) 1/2

fa fl g2 ( r )G 2 (t) dt = 0, or
- a - 1 ( 1 - r 2 ) 1/2 dr = 0,

(2.41)

From ( 2.39 ) and ( 2.40 ) it can be seen that these extra conditions are:

N fl Wj_1 ( r )
_: aj j r2 )1/2]=1 -1 (1-

dr=0,
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N i1 (r)E bj TJ-1
j=l - 1 ( 1- r 2 )1/2

dr _ 0 .

(2.42)

Using the orthogonal conditions:

1 Tn (r) T0(r)
- 1 ( 1 - r 2 )1/2

dr = 0 , n _ 0,

n--0_

( 2.43 )

and observing that T O ( r ) _=1, we obtain

( 2.44 )

Considering ( 2.44 ) for further convenience, we rewrite the unknown functions as

follows:

M

gl (r)= E akTk(r)'
k=l

2M

g2 (r) = E ak Tk-M (r)"
k=M+l

(2.45)
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Substituting ( 2.45 ) into ( 2.38 ) the singular integral equationscan then be
expressedasfollows:

M fl T k ( r )
E /_11 ak dr

r j 1/2( _k=l -1 (1-r 2) r s)

2M 1
P12 r Tk_ M ( r )

+ 2_,
ak J 1/2(k=M+l - 1 (1-r 2) r- s)

dr

M 1

+ ak I Lll(r,s)
k=l - 1

Tk(r)

( 1 - r 2 ) 1/2
dr

2M 1

+ E ak I L12 (r,s)
k=M+l - I

Tk_ M ( r )

( 1 - r 2 ) 1/2
dr --_

m

fl(s),

M

E
k=l

Tk(r)

( 1 - r2 ) 1/2(r_ s )
dr

+

2M

E
k=M+l

P22
7_--a k I 1

-1

Tk_ M ( r )

( 1 r2 ) 1/2(- r-s)

dr

M

+E
k=l ak 1

L21 ( r, s )
Tk(r)

( 1 - r 2 ) 1/2

dr

2M

+E
k=M+l

L22 ( r, s )
Tk_ M (r)

( 1 - r 2 ) 1/2
dr _-- f2 (s),

Isl<l,

( 2.46 a, b )
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wherethe unknownsareak ( k= 1, ..... 2M ).

In the collocationmethodthereis no restrictionon the choiceof s. In this study we

chooseTM (s i) = 0or

si = cos (_ _) , ( i = 1,.... M ).

(2.47)

In ( 2.46 ) for a given value of s there are two integrations to be evaluated. Any

standard technique can be used, for example, Gauss - Chebychev quadrature which

takes advantage of the weight

1 h( r )1 (1 r2) 1/2 dr = _ %h(rj),- - j=l

(2.48)

where

j-1
rj=cos( N-1 lr ),

1 7r

wl= 2 N-I'

7r

_J =--_- 1 ' j = 2, ..... N-1 ,

WN= 2 N-l"

(2.49)
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For the singular integrals, such expansion function Tj ( r ) give the closed form

expressions:

1 dr = 7rU]_ 1 (s),
Tj(r )

-i (i- r2)*/2(r-s)

(2.50)

where Uj ( r ) are the Chebychev polynomials of the second kind.

Using ( 2.49 ) and ( 2.50 ) with the collocation points sj as in the equation ( 2.47 ),

the singular integral equations (2.46 a, b ) can be evaluated at M different points

giving 2M linear algebraic equations for a I ... a2M. The unknown functions G 1 ( t )

and G 2 ( t ) can then be obtained from ( 2.45 ) and ( 2.37 ).

2.3.2 Displacemen t Components along th....£eCrack

From the previous subsection and ( 2.15 ) and ( 2.16 ) we could express the

unknown functions as follows

M Tk( y/a )_ O
GI(Y)----_ "u0(0'y)-- Z ak

k=l ( a 2 _ y2 )1/2
a ,

2M Tk_M( y/a )
G2 ( Y ) =--_-y ¢x (0'y) = Z ak

k=M+l ( a 2 . y2 )1/2
a ,

]Yl<a,

(2.51)

where T k are the Chebychev polynomial of first kind, a k ( k = 1, .... , 2M ) are the

coefficients determined by solving the singular integral equations ( 2.46 a, b )

numerically, and a is the half crack length.

6O



Fromthe definitionit is clearthat for [ y [ >_a

G1(y) --- 0, G 2 (y) = 0.

(2.52)

From ( 2.15 ) , ( 2.16 ) and ( 2.52 ) we could then easily obtain the displacement

components along the crack as follows

Yu 0 (0, y) = G l (y) dy
- a

M [Y Tk( y/a )

= a _ ak j )1/2k=l - a (a2_ y2

dy ,

(2.53)

YCx (0, Y) = G 2 (y) dy
- a

yy Tk_ M ( y/a ) dy= a a_ i a-_- y2 )_/2 'k=M+l - a

(2.54)

Note that physically u 0 is the displacement in x direction in a given reference plane z

----- 0, and ¢× is the rotation of x = constant plane in the plate. From the basic

assumptions of the displacement-based plate theory ( 1.52 ) we obtain the

displacement of the plate in x-direction as follows ( see figure 2.1 and expressions

(2.1)):

u ( x, y, z ) = u0 ( x, Y ) + z Cx ( x, Y)-

(2.55)
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We alsoobserve that due to the first oder theory used the value of u 0 ( x, y ) depends

on the choice of the reference plane whereas the value of u ( x, y, z ) and Cx ( x, y)

will not do so. In this study for further convenience, and without any loss in

generality, we choose the neutral plane of the laminated plate as reference plane.

From ( 2.53 ), ( 2.54 ) and ( 2.55 ), the u ( 0, y, z ) which is the displacement in x-

direction along the y - z plane ( i. e. the crack plane ) can then be obtained as

u ( O, y, z ) -- Uo (0, y) + z ¢× ( O, y )

I y"= [Gl(y ) +zG2(y)] dy,
- a

lyl<a.

( 2.56 )

Since the laminated plate consists of layers with different material properties, the

displacement component u ( 0, y, z ) or u 0 ( 0, y ) and Cx ( 0, y ) , which are

essential to describe the behavior of the through - thickness crack, will depend on the

stacking order of the layers. In this work the nature of u ( 0, y, z ) will be studied for

the following combinations:

i ) symmetrically laminated plate;

ii ) unsymmetrically laminated plate;

under uniform tension or bending.

I. Symmetrically Laminated Plate

For a symmetrically laminated plate the neutral plane corresponds to the

plane of symmetry of the plate. For such a plate by taking the symmetry plane as the

reference plane, the bending and in-plane stretching problems may be decoupled.

Therefore, the singular integral equations ( 2.33 ) become:

fa
/_11 G 1 (t) dt =fl (Y),

r -a i-y

(2.57)
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for in-plane stretching problem,

Ia I/222 G 2 ( t ) dt+
_r _ a t-y -a

k22 (y,t) G 2 (t) dt = f2 (Y),

lyl<a.

( 2.58 )

for bending problem. Here fl ( Y ) and f2 ( Y ) are defined by equations ( 2.14 ).

From ( 2.57 ) and ( 2.58 ) we can easily see that the in-plane stretching

problem and the bending problem are reduced to , respectively, a homogeneous single-

layer plane stress problem and a bending problem for a plate with a central crack.

This is expected because we have used the so-called single-layer laminated plate

theory which is based on replacing the laminated plate by an equivalent single-layer

anisotropic plate. Note that G 1 ( y ), G 2 ( y ) and u ( 0, y, z ) are the global

quantities introduced by this type of plate theory. After solving for the unknown

functions G 1 ( y ) and G 2 ( y ), the displacement component along the crack u ( 0, y,

z, ) can be obtained

u(O,y,z) ---uo(O,y ),

for the in-plane stretching problem, and

(2.59)

u (0, y,z) - ZCx (0, y),

for the bending problem.

(2.60)

II. Unsymmetrically Laminated Plate

Unlike the symmetrically laminated plate problem, the unsymmetrical plate

problem is inherently coupled. It is expected that for such a plate even if is under

uniform tension applied in its neutral plane, there exist both the in-plane displacement

u 0 ( 0, y ) and the rotation ¢×(0, y ). The singular integral equations in this case are
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2 ia G_-_ dt+ 2 Ia
j=l -a _j=l - a

klj (y, t) Gj (t) dt--fl (Y),

2 a _ 2 f_ _J I .(t) a-_, dt%
j=l - a j=l - a

k2j (y, t ) Gj ( t ) dt ---- f2 ( y ),

lYl<a.

( 2.33 a, b )

The problem will be solved separately under uniform tension and uniform bending

defined by

and

fl (y) = N c¢,

f2(Y)=0,

(2.61)

fl(Y)=O,

_(y): M _,

(2.62)

respectively.

Again using the numerical procedure described in subsection ( 2.3.1 ), after obtaining

the unknown function G 1 ( y ) and G 2 ( y ), the displacement component along the

crack plane can be determined by the equation

Yu(O,y,z)= [Gl(y ) ÷zG2(y)] dy,
- a

lyl<a.

( 2.56 )
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2.3.3 _tress Intensity Factor

It is well known that from the linear elastic theory of crack problem, the mode

I stress intensity factor at the embedded crack tip can be obtained by one of the two

alternate definitions

kl(z)---- Lim _2(y-a) ax(0, y,z),
y--_a +

(2.63)

kl(z)= Lira "7 ._2(a-y) --_y u(O,y,z),y-_a-

(2.64)

where -fi- is a material constants defined by

4p for isotropic material,
P -- l+a '

and

where _=3 - 4v for plane strain,

3 - v for plane strain,
_¢= l+v

--if- = E for plane stress,
2'

--if- = . E for plane strain,
2(1- 2) '

and

dll d12 - 1/2 dll 1/2 2 d12 + d66 -1/2
.-p- ( 2 ) + ] ,d22 2 d22

(2.65)

for orthotropic material when crack is located in yz plane and d U is defined in

Appendix I.

Note that definition ( 2.63 ) is based on the stress distribution outside the

crack, whereas definition ( 2.64 ) is based on the displacement component along the

crack plane u ( 0, y, z ) inside the crack. Naturally, for this displacement based plate
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theory we use definition ( 2.64 ) to get the stress intensity factor at the crack tip as

follows

k,(z)= Lira _ra _2(a-y) --_-y u(O,y,z),y_a-

(2.66)

where Pm is a material constants defined by ( 2.65 ) for the mth layer of the

laminated plate and the displacement component u ( O, y, z ) has been discussed in

detail in the previous subsection ( 2.3.2 ).
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2.4RESULTSAND DISCUSSION

Two typesof plate problems,a homogeneousplateand a laminatedplate with

a central crack, are studiedin this chapter.The modeI stressintensity factorsare

obtainedfor each case.For homogeneousmaterials,we are interestedin cracked

platessubjectedto bendingonly. Although in this chapteronly the general linear

laminated plate theory is implemented to solve the crack problem, in a similar

manner, the other three transverse shear deformation plate theories reviewed and

discussed in chapter 1 have been used to solve the crack problem in an isotropic

homogeneous plate. This is done to investigate how different plate theories affect the

description of crack tip stress behavior and to give an assessment to the plate theory

used in solving the laminated plate problem. For a laminated plate the results given

are by using the general linear laminated plate theory. As will be seen later, this

approach can be justified from the homogeneous plate results. In this case the

problem is solved under both tension and bending loads. It should be emphasized that

when we say the plate is under bending it is always assumed that the plate is under

membrane as well as bending loads so that there is no interference of the crack

surfaces on the compressive side of the plate. This can be achieved by linear

superposition.

The elastic constants of orthotropic materials used in the numerical examples

are given in Table 2.1. These materials are all fiber reinforced graphite-epoxy

composite laminates. Note that material B is the same as material A, except that the

axes are rotated 90 ° about z, which is true also for materials D and C. For isotropic

materials, E i and v i ( i = 1, 2, 3 ) represent the Young's modulus and Poisson's ratio

of the ith layer in the plate. To study the effect of the material properties on the

stress intensity factor, some hypothetical material constants are also used to solve the

problem.

2.4.1 Homogeneous Plate

The elastic problem for the symmetric bending of a cracked homogeneous

plate has been considered before. For example, with Reissner's stress-based first order

plate theory, the problem was solved for an isotropic plate in [ 21 ] and for an

orthotropic plate in [ 22 ]. In this study some additional results are given in

conjunction with the displacement-based plate theories, namely, Mindlin's first-order
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plate theory and a simple higher - order plate theory described in Chapter 1. Table

2.2 shows the effect of the thickness ratio a/h on the stress intensity factor, which are

obtained by different plate theories. Classical bending theory's results are included for

the purpose of comparison. Because of the Kirchhoff assumption the classical theory

gives rather inaccurate results near the boundaries. In a crack problem the crack

surfaces are plate boundaries and the important part Of the solution is its behavior

very near the crack tip. Therefore, classical plate theory is somewhat inaccurate in

solving the crack problem. This can be seen in Table 2.2, since it gives the same

normalized stress intensity factors regardless of the value of a/h. Moreover, from

Table 2.2, it can be seen that the other three transverse shear deformation theories

give much the same values regarding the normalized stress intensity factor, with the

variation of only about 1%. Later on, based on this observation, for computational

convenience, a generalized Mindlin's displacement based first-order plate theory will

be used for laminated plate problems. In the meantime, the effect of the transverse

shear correction factor K in Mindlin's theory [ see ( 1.18 ) ] on the stress intensity

factor is also studied. The results are given in Table 2.3. As stated before, by taking

K as 1 and 5/6, we could obtain Mindlin's and Reissner's theories ( which are first

order theories ). In Table 2.3 some extreme values of K are also considered in order to

observe the trends.

2.4.2 Laminated Plates

In this part of the study, the results are given for both symmetric and

unsymmetric bending as well as the membrane loading( i.e., for the neutral - plane

tension ). For convenience, we take the neutral plane of the laminated plate as the

reference plane. In this case the corresponding boundary conditions are

fl(Y)=N °°,

f2(y)--O,

for the membrane loading and

(2.67)
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fl(Y)=0,

f2(y)= M °c,

for the bending case.

(2.68)

First a three-layer symmetric laminated plate is considered. This is a

simplified model for a sandwich plate and a "honeycomb" structure. The notation of

the plate is shown in Figure 2.2a.

Because of the nature of the plate theory used, the displacement components

u, v, the stress components ax,ay, rxy as well as the stress intensity factor will be

piecewise linear functions of z. As expected, while the displacement components are

continuous functions, the stress and stress intensity factor will have a discontinuity at

z ---- 4- hi/2 , [ see ( 2.66 ) ] due to the nonhomogeneity of the laminated plate. Figures

2.3 and 2.4 show the effect of the thickness ratio a/h on the stress intensity factors at

z = hi/2 of Material I and z ---- h/2, respectively. The results are given for different

material combinations with material I fixed as Material A and Material II being

Material A, Material B and other hypothetical isotropic material ( having a Young's

modulus of 0.39, 3.9 and 390 GPA ). Figure 2.5 and 2.6 show the effect of the

thickness ratio a/h and ratio E2/E 1 on the stress intensity factor. Here both materials

are isotropic. Similar results are shown in Figures 2.7 and 2.8 with different hl/h 2

ratios. From Figure 2.7 it may be observed that the variation in the stress intensity

factors for different ratios E2/E 1 is relatively insignificant. This is expected because

with h 1 = 0.1 h2, the core material near the symmetry plane have very little influence

on the behavior of the plate when it is under bending only. On the other hand as

shown in Figure 2.8, the thin layers on the outside will have a much more significant

effect on the stress intensity factor.

A material of some considerable practical interest is a "honeycomb structure"

which can be modeled as a 3-layer symmetric plate with the following features:

( referring to Figure 2.2 a )

a. hx >>h 2 ,

b. E 2 >> E 1,

c. for Material I the out-of-plane shear stiffnesses Gxz and Gyz are much
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greaterthan thein-planeshearstiffnessGxy.

Figures 2.9 - 2.13 show the results for such a structure. Here, Material II is isotropic

having the elastic constants E 2 and _2 = 0.3_ and Material I is assumed to have the
E1

properties El, Gxy = _1) ' _'1 = 0.3 and Gxz = Gyz = TT Gxy. The results given

in these figures are rather self-explanatory. While Figure 2.9 shows the effect of the

thickness ratio a/h and TT on the stress intensity factors, Figures 2.10 and 2.11 show

such effects due to the variation of E2/E 1 and TT. The effect of hl/h 2 for various

values of TT and E2/E 1 is shown in Figures 2.12 and 2.13. It may be seen that for

hl/h 2 ---* 0 the isotropic result k/k 0 = 0.74 is recovered.

As second example the bending and membrane loading of a two-layer

unsymmetric plate problem is considered. The notation used is shown in Figure 2.2 b.

Note that we choose the neutral plane of the plate as the reference plane, with c o

being the vertical distance between the lower surface of the plate and the neutral

plane.

Figures 2.14 - 2.18 are results obtained for such two - layer plate, which are all

plotted as k2/k 0 v.s. a/h. Here a/h is the crack length and plate thickness ratio, k0 =
MOO

crb T-K-" with v"b = --ff5/6 when the plate is subjected to uniform bending moment M
at the infinity and k 0 "- a t q-'if- with crt = N ooh when the plate is under the

membrane load Nx = N _ only, and k 2 is mode I stress intensity factor at the upper

surface of the plate with z = h - c 0. Figure 2.14 gives the results obtained for different

E2/E 1 values where both materials are isotropic and v 1 is equal to t,2. The results

given are for uniform bending moment. It is interesting to note that in this problem

even though the singular integral equations are coupled, we obtain Cx _- 0 when the

plate is under the in-plane tension and u 0 _= 0 when it is under bending. These are

quite similar to the uncoupled case. Figure 2.15 and 2.16 show the effect of _,2/Vl

ratio on the stress intensity factor in a composite plate under bending and membrane

loading respectively. It must be emphasized that for the membrane loading due to the

coupling the stress intensity factor is still a linear function of z despite the factor the

external force N oo is applied in the neutral plane of the plate. These results are quite

significant because if we use a plane elasticity approach to solve this kind of problem

it might give misleading results. Figures 2.17, 2.18 and 2.19 give the results for plates

consisting of two bonded orthotropic layers.
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In an attempt to determinethe effectof the individual material constants on

the stress intensity factors for the two-layer plate, the bending stress intensity factors

for a/h = 1 and h2/h 1 = 1 are calculated. In these examples, Material I is fixed as

being an isotropic material in figure 2.20 or an orthotropic materials in Figures 2.21

and 2.22 and Material II is assumed to be a series of fictitious orthotropic materials

where in each case only one or two material constants are varied. Here Material II

with the exception of the particular material constant that is varied, is assumed to be

"isotropic". For example, in Figure 2.20 for the curve of R -- G13 / G12 Material I is

assumed to be isotropic with constants E (1) and Ul " 0.3, whereas for the Material II

we assumed that

and

E (2) -- E (i)

GI2 -- G23 =
E(1)

2(1+0.3) '

and only G13 is varied relative to the remaining constants. It should be pointed out

that in all cases, the stress intensity factor k 2 is a monotonically increasing or

decreasing function of R except for varying G12 for which it seems to have a

maximum for some value of R > 1. Similar results were observed in homogeneous

orthotropic plates [ 22 ].

Figures 2.23 - 2.26 show the results regarding the distributions of the stress

intensity factor along the plate thickness direction in the two-layer orthotropic plate,

where Material I is Material A and Material II being Material B. For convenience the

results given are k ( --2"- )/ k o v.s. T/h, where

T -" z + Co,

so that -_- / h = 1 and T / h - 0 correspond the upper and lower surfaces of the

plate.

Figures 2.23 and 2.24 are results when the plate is subjected to uniform tension and

pure bending respectively with the thickness ratio h2/h 1 --- 1. Notice that in Figure

2.24 the negative value of stress intensity factor, k, is due to the pure bending

moment loading. Figures 2.25 and 2.26 show similar results with h2/h 1 = 10. It is
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clearly shown that due to the nature of the plate theory used, the stress intensity

factors are linearly distributed along the thickness of the plate. In Figure 2.24 because

the Material A in layer I is "stiffer" than Material B in layer II, it is expected that

[k(0)[ :-- 0.833 is larger than [k(1)[ = 0.792. Similar trends may be find in other three

figures too.

Finally we consider two examples concerning unsymmetric plates that consist

of three layers subjected to both tension and bending. The geometry and the notation

used are shown in figure 2.2c. We use the same convention as in the two-layer case,

namely

ko -- ab _ , °'b "--

for the bending case, and

M oo

h2/6

ko = _t _ ' _t = N°°
h '

for the tension case.

Figures 2.27 and 2.28 are the stress intensity factor distributions in materials having

the same Poisson's ratio v -- 0.3 and Figures 2.29 and 2.30 are the results for

materials similar to that considered in Figure 2.27 and 2.28 with different vl, v 2 and

v 3. The same uncoupling features are observed as in the two - layer case. That is

when all v's are same in isotropic materials, Cx -- 0 for.the membrane loading and u 0

-- 0 for bending. This uncoupling phenomenon disappears when the v's are different.

It is expected that the coupling becomes more significant when all the materials are

orthotropic. In such cases it would be more appropriate to use a plate theory instead

of plane elasticity theory to solve the crack problem under membrane loading.
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Chapter 3. Stress Intensity Factor in Two-bonded

Orthotropic Layers Containing a Crack Perpendicular
to and on the Interface

3.1 INTRODUCTION

In modern engineering layered multimaterial systems have been widely used,

ranging from laminated composites to microelectronic devices. In structural analysis

and design of such systems, one of the most important considerations is the fracture

of individual layers. It would be very attractive to develop special types of designs

that improve the structural resistance to fracture failure. As one example of such

design practice one may mention the process of manufacturing laminated composites

in order to improve the structural resistance to unstable crack propagation by

strengthening the material in certain directions, choosing the laminates with different

material properties, and stacking the laminates in different sequences. All these

increasing use of modern technologies have generated new problems for the structural

design and failure analysis. Among the multitude of problems in this study we are

mainly interested in the fracture analysis of a mutilayered medium and specifically in

the influence of material properties on the fracture behavior of the system.

If one examines the evolution of typical fracture failure in layered structural

components, one may invariably trace the initial cause to a localized imperfection.

One of the common forms of such imperfections is the surface flaw which may have

the potential for growing into macroscopic cracks. Under cyclic loading and/or

adverse environmental effects a surface flaw may grow into a part-through surface

crack. Upon further application of the loads the surface crack may propagate

subcritically through the thickness of the first layer which, in some cases, may cause

the total failure of the system. In analyzing the subcritical growth of these surface

cracks as well as the cracks imbedded into individual homogeneous layers, it is now

generally accepted that the stress intensity factor can be used quite effectively as the

primary correlation parameter. In studying the fracture of multilayered materials the

basic mechanics problems is then the calculation of stress intensity factors along the

crack front for physically relevant external loads and crack geometries. To do this, a

mathematical model which may realistically take into account the geometrical and
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physical properties of the medium and the real mechanism of fracture is needed.

Because of mathematical difficulties, in recent studies the geometry and the material

properties have been considerably simplified by introducing certain two-dimensional or

axisymmetric approximations along with the material isotropy. In the early solutions

the medium was generally assumed to be infinite consisting of either semi-infinite

spaces with or without a layer in between, or periodically stacked laminates. For

example, the plane and axisymmetric problems for a medium which consists of two or

three different materials and which contains a crack perpendicular to the interfaces

may be found in [23-26]. The layered composite which consists of periodically

arranged two dissimilar orthotropic bonded layers was considered in [27]. The effect of

the elastic properties and the thickness of the adhesive in bonded layered materials

was studied in [28]. Later, the plane problem, which is somewhat closer to the actual

problem, of two bonded layers containing cracks of various orientations and sizes was

studied in [29] and [ 30 ]. In that study the individual layers were considered as being

isotropic. Particularly in studying composites, the assumption clearly is not very

realistic.

In this study the plane elasticity problem of two-bonded orthotropic layers

containing a crack perpendicular to the interface is considered. It is assumed that the

crack is located in one of the two layers and in a principal plane of orthotropy. The

crack problem of a multi-layered medium can be treated as a two layer problem which

consists of the layer that contains the crack and a homogenized composite layer

representing the remaining part of the medium. Three different problems are studied:

the internal or embedded crack problem, the edge crack problem and the problem of a

crack terminating at the interface. A general formulation of the problems is given for

plane strain case with the material type I. The singular behavior of the stress around

crack tip and at the bimaterial interface is studied. The resulting singular integral

equations are solved numerically and the stress intensity factors are calculated for

various crack geometries and various material combinations. The effect of different

material combinations and material orthotropy on the power of stress singularity for a

crack terminating at the interface is fully examined.
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3.2 THE FORMULATIONOF THE PROBLEM

Considera two-dimensionalmedium which is formed of two orthotropic

infinite layers having thicknessesh1 and h2 as shownin Figure 3.1. Assumethe

layersareperfectlybondedalongy=h1planeand containa crackon the x=0 planein
the first layer.Further assumethat by propersuperpositionthe problemis reducedto

a perturbation problem in which the crack surfacetractions are the only external
loads.

3.2.1Solution of Differential Eouations

Let the coordinate systems be selected as in Figure 3.1 and let u (i), v (i),

(i=1,2) be the x and y components of the displacement vector in the layers. The

following differential equations which result from the plane theory of elasticity must

be solved for each layer under appropriate boundary and continuity conditions:

02u 02u 02v

flz _x 2 -f --05,2 + ]_3 _0x0y ---- 0 , ( 3.1a )

02v + _2 02v + _3 o2u
0x 2 Oy----_ _ = 0 , ( 3.15 )

where

bll _ b22

Zl=-C xy' Z2

b12
f¢3 = 1 + -_xy' (3.2a)

and [B] = [C] -1

( 3.2b )
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and

1- Vxz Vzx 1- Vy z Vzy

Cll = Ex ' C22 "- Ey

Vy x 31- VZ x Vy z Vxy ._L Vzy /Jxz

C12 -- C21 = " Ey --

for plane strain, and

(3.3a)

1 1
c11= "_x' c22 = E-"-y-'

Vyx Vxy
C12 -" C21 -"" -"W"'-" Ex_y

for plane stress.

(3.3b)

Because of symmetry, the problem will be considered for 0 >x> oo only.

Let the solution of (3.1) be expressed in terms of the following Fourier

integrals:

_-- ul (i) "4- u2 (i)

v

fo ix da + 2 gl ( )(x,7)cos_' y d7

I I:'c¢ f2( i )(y,a)cos a x da + 2 g2 ( )(x,7)sin3' y d7¢i _(x,y)= _ 0

(i) (i)
= V 1 + v 2

( 3.4 a,b)

76



For simplicity at the beginning we will ignore the index ( i ). Note that fi and g i

( i=1,2 ) are also functions of the material properties in each layer. By substituting

from

ul(x,y) = 2 Io°c ft(y,a)sina x da '

Vl(X'Y) =2 I_ f2(y,a)cosa x da, O<x< _, O<y< h,

(3.5)

into the equilibrium ( 3.1 ), we obtain

/_1 ( - a2) fl -F fl" -l-_3 f2 ' ( " a) = 0 ,

f2 (- a2) + j32f2,, + $3fI ' (+ a) =0" (3.6)

Assuming the solution of ( 3.6 ) in the form

fl (y,a) = A(a) e sya ,

f2 (Y,a) = B(a) e sya , (3.7)

we obtain the following characteristic equation:

S4 -_- _4 s2 -I- ]_5 ----- 0 , (3.8)

where _4 and /95 are defined as:

f132- /_1 ,B2 - 1 /_1

,02
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Therootsof ( 3.8) are

S2 ._ -84 -1- _ _42- 4 _5

2 ( 3.10 )

Defining

Z6 = JZ42- 4 /_s , (3.11)

we find

s1= 1+i 2=  (-Z4+86)/2 , s3=.s 1 ,

S2 = W 3 q- i W4 = _( - _4- 86)/ 2 , s 4 = - s 2 , ( 3.12 )

where w 1 and w 3 are assumed to be positive.

Thus, from ( 3.6 ), ( 3.7 ) and ( 3.12 ) it can be shown that

- _ s2Y0f
fl (y,c_) = Al(a ) eSlYa+ A2(a ) e sly_+ A3(cr ) e s2ya + A4(a ) e

- slYC_
f2 (y,a) : 87 [ Al(a) eslya- A2(a ) e ]

- s2Y_
+ 88 [ A3(a) eS2Ya- A4(a) e ],

(3.13a, b)
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where _3 s2

1 - _2s2 2
(3.14)

Similarly, substituting from

u2(x,Y)=_2 I:

v2(x'Y) =2 f:

gl(x,7)cos7 y d7 ,

g2(x,T)sinT Y dT, O<x< o¢ ,

(3.15)

O<y< h ,

into equilibrium equations ( 3.1 ) it maybe shown that

_1 gz"- 72gl + _37 g2 t= 0 ,

g2 H - 72 /_2 g2 4- _3 gl t (_ 7) = 0 . (3.16)

If we now let

gl (x,_) = c(7)e mx'_

g2 (x ,7) = D(7) erex7 , (3.17)

the characteristic equation becomes

,_'4 m 2 1
m4 nL-'_S +75--0 •

From ( 3.18 ) it may be shown that

(3.18)
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I ,J(- _4+ _6)/2 m3 =- m_ ,
ml -- _5

1 _(" '_4" _6)/ 2 m 4 -'- m 2 ,
m2 = _5

( 3.19 )

( Re (ml, m2) > 0 ).

Considering now the regularity conditions at x = oo, from ( 3.16 ), ( 3.17 ) and (3.19)

it may be seen that

_ _ m2x 7
gl (x ,7) = C1(7) e mlx7-_ - C2(7) e

- mlx 7
g2 ( x ,7) =- _g Cl('r) e - _io

- m2x 7
C2(7) e , ( 3.20 a, b )

where

_lSl

( 3.21 )

3.2.2 Displacements _ aa.__Ad_ for Material type ! "

Examining the following roots of the characteristic equation ( 3.6 )

Sl =-_s ml = Wl + i w2= "_(-n4q- H6)/2 ,

s2 ---- _5 m2 -- w3 q- i w4 ---- "_(" f14- _6)/ 2 , ( 3.22 )

it can be shown that s 1 and s2 are either real or complex conjugates. We define

Materials type I and II as follows:
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Material type I :

Sl "- _5 ml = wl ' W2-'- 0

S2 -- _5 m2 -- w3 ' o;4 "-- 0 , ( 3.23 )

Material type II :

Sl = _5 m 1 = w 1 Jr i W 2 ,

S2 -- _ m2 = w3 Jr i W 4 ( 3.24 )

In this study we will assume that the material is of type I. The results for type II

materials may be obtained with slight modification in the analysis. Note that s 1 and

s 2 are the roots with positive real part and f15 > 0. Defining now

w I w3

fill = --_ 5 , ZI2 = --_5-5 ,
( 3.25 )

K 1 ---- ( A1- A2) , K 2 = ( A1 Jr A2) ,

K 3 = (A3- A4) , K 4 = ( A3 Jr A4)

(3.26)

from ( 3.4 ), ( 3.13 ) and ( 3.20 ) it may be shown that

u(x,y)- 2 I0°° [ Kl(a)sinh(wlay ) Jr K2(a)cosh(Wl(_y ) Jr K3(a)sinh(wsay)

+ K4(_)cosh(w3ay)] sin_ x da
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v(x,y) = 2 I7 [81 K2(a)sinh(wlaY) + 87Kl(a)cosh(wlay) + 88K4(a)sinh(w3c_y)

+SsKa(a)cosh(w3c_y)] cosc_xdc_

" _ 89 Cl(7)exp(-_°l"7"x/_-£s) + 810C2(_')exp(-wa'7"x/_-s )]sinTy d7 ,

(3.27a, b)

where Kl(a), K2(a), K3(a), Ka(a), C1(7) and C2('y) are the unknown functions to

be determined from the boundary conditions.

3.2.3 Stress Field:

Using the following stress-strain and stress-displacement relations:

axx = bll _x "l-b12 ey , ( 3.28 )

Cx__zx= ex + bl______2_:y
bll bll

__ Ou b12

-- _ + bll

O'yy= b12 ex + b22 Cy

(3.29)

(3.30)

O'yy -- b12

b12 Ou Ov

= b22 ax + 0--7
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Ou Ov
O'xy -- Gxy 7xy = Gxy ( _ Jr _ )

1 Ou O._y__v
Gxy °'xY "- _ + Oy

( 3.32 )

(3,33)

where

[B] = [C] -1

and eij are defined in ( 3.3 ),

(3.34)

from ( 3.17 ) we obtain the stress as follows:



Gxy Iooaxy = 2 o [ A9 Kl(a)c°sh(wlc_Y) + A9 K2(a)sinh(wlaY)

+ AlO K3(a)cosh(w3ay) + Alo Ka(a)sinh(w3ay)] a sina x da'

where

[All Clexp(-wl.7.x/_5) + A12 C 2 exp(--wl'7"x]_-5) 7 sin7 y d7 ,

(3.37)

)_1 1 + )37 Wl b12 , )_2 = _ + f_B w3 b12
= bl 1 -bll '

b12
b,,,

A3 = J311 + _9 blI , '_4 _--- _12 "{- ,_10 _ '

= 522 = b22 ,

bi___/_2
L

-- b22

(3.38)
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3.3 THE INTEGRAL EQUATION

Usingthe conditionthat _xymust vanishfor x ----0, which follows from the

assumed symmetry, from ( 3.37 ) we obtain

A12 C2 . (3.39)
CI="

Defining the new unknown function

cgu (0, y) = 51 (Y) ,
by

y6L,

= O, y 6 L', (3.40)

where(L + L') = (0, h 1), L refers to the crack,

from ( 3.27a ) for layer 1, we find

2j (C 1 Jr C2) (- 7)sin'/yd7 --- ¢1 (Y) (3.41)
0

Inverting the Fourier integral, from ( 3.39 ) - ( 3.41 ) it follows that

C1--A14 1 I0c_ el(t)sinTt dt--_14-]7 I_ ¢1(t)sin7 tdt ,

where

el(t) sin7 t dt----A13-17 I_ el(t) sin7 tdt ,

(3.42)

_12
All _14 = _ 11_13 -- _12 " _ 11 '

"_13 ( 3.43 )

85



We now use u, v, 0"xx , O'yy and O'xy to express the displacement and stress

components in the first layer (that contains the cracks) and u*, v*, _xx*, ayy* and

_rxy* in the second layer. Then, referring to Figure 1, We have the following boundary

and continuity conditions:

O'yy(0,X)=0 ,

O'yy* (h2,x) - 0 ,

axy (0,X) ---- 0 ,

axy* (h2, x ) -- 0

( 3.44 a- d )

u (hi,x) =u* (0,x), v(hl,x)=v* (0,x),

gyy(hl,X ) = ayy* ( 0,x ) , a×y (hl,x) ---- erxy* ( 0,x ) .

( 3.45 a- d )

We observe that the displacement and stress expressions for layers 1 and 2 contain

g *nine unknowns, K1, K2, K3, K4, KI* , K2* , 3 , K4* and el(t) Using the eight

boundary and continuity conditions ( 3.44 ) and ( 3.45 ) we can obtain K i and Ki*

(i=1,4) in terms of the unknown ¢1" The function ¢1(t) can then be obtained from

the following mixed boundary condition:

ax× (O,y) =- p (y), y E L

u (O,y) ---- O, y E L !

( 3.46 a,b)

By substituting from ( 3.36 ) into ( 3.44 a) and by inverting the Fourier

integral, we find
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+ A8C2 e" fl127 x]7 cos 7Y c°sTx d7 dx.

(3.47)

After evaluating the integrals from ( 3.47 ) and ( 3.42 ) it may be shown that

[P3 K2 + P4 K4 ] _ = [" 2 B s e- (_/]_llt 2 B 6 e" °t/_12t]- ) (3.48)

where F--- F ¢1 (t) dt (3.49)
J L

and see AppendixII for P3 and P4 and B 5 and B 6.

Similarly, from ( 3.445 ) and ( 3.37 ) we obtain

[P5 K1 q- P6 K3] a = O. (3.50)

By using again the general expressions ( 3.36 ) and ( 3.37 ), for layer 2 from the

boundary conditions ( 3.44 c ) and ( 3.44 d ) we find

* * * cosh ( Wl*[P3 sinh(w 1 ah 2) KI* + P3 ah 2) K2*

-[- P4 * sinh ( w3* a h 2 ) K3* + P4 * cosh ( w3* a h 2 ) K4* ] a -- 0 ,

[P5* cosh(wl*c_h 2)K** + ps*sinh(wl* ah 2)K2.

+ P6* cosh (w3* ah 2) K3* + P6* sinh (w3* ah 2) K4*] a-- 0.

( 3.51 a, b )

where the quantities with the superscript * are those in layer II having the same

expressions with the quantities without * in layer I. For example, Wl* is the

characteristic root for the material in layer II with the same expression as in ( 3.12 ).
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In a similar way, by substitutingfrom the generaldisplacementexpressions

( 3.27) into the continuity conditions( 3.45) andby evaluatingthe relatedintegrals
weobtain

K1sinh(Wlahx) + K2 cosh(Wla h 1) + K3 sinh(w3a h 1) + Kacosh(waa h 1)

K2* K4* = ( . 1- - _ ) [ BI[ exp(- (hl-t) o/fill)- exp (- (h 1 + t) o/fill) ]

+ B2[ exp(- (hl-t) a/fil2 ) - exp ( - (h 1 + t) a/$12)] ] F ,

[ Pl K1 c°sh(Cala hi) + P1K2 sinh(Wla hl) + P2K3 c°sh(w3a hi)

+ P2K4sinh(w3a h 1) - Pl*Kl* - P2*K4*

1
= ( " --5- ) [ B3[ exp(- (hl-t) a/fill) - exp (- (h 1 -{- t) a/fill)]

+ B4[ exp( - (hl-t) a/fil2) - exp (- (h 1 + t) c_/fll2)] ] F ,

[P3K1 sinh(wla hi) + P3K2 cosh(wla h1) + P4K3 sinh(w3a h 1)

-q- P4K4cosh(w3 a h 1) - P01P3*K2* - P01P4*K4*

= ( - _ ) [ ns[ exp(- (hl-t) o/fill)- exp (- (h 1 -F t) o/fill) ]

+ B6[ exp(- (hl-t) a/fil2) - exp (- (h 1 + t) a/fil2) ] ] F ,

[ Ps K1 c°sh(wla hl) + psK2 sinh(wla hl) -_- PsK3 c°sh(w3a hi)

+ P6K4sinh(w3a h 1) * * * *- Po2P5 KI " P02P5 K3
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= ( ---1a ) [ BT[ exp(- (hl-t) a//911) - exp (- (h 1 + t) a/fill)]

+ BS[ exp(- (hl-t) _//912 ) - exp (- (h 1 -{- t) a//912)] ] F ,

( 3.52 a- d)

where

Gxy
b22 P02 -- * ( 3.53 )

POl -- b22" ' _xy

and see Appendix II for expressions Pi ( i = 1, 6 ) and B i ( i -- 1, 8 ).

In summary, the system of equations for the unknowns Ki(a ) and Ki*(a ), (i =

1,.. ,4) may be expressed as follows:

aPK= rf, (3.54)

P = ( Pij ),

K = [K 1 K 2 K 3 K 4 KI* K2* k3* K4*]T,

f= fl exp [- (a//911) t ] + f2 exp [- (_/ /912) t ]

-t- f3 exp [- (a/ /911) (hl- t )] + f4 exp [- (a/ /912 ) (h 1 - t ) ]

+fsexp[- (a/ /911)(hi+t)] +f6exp[- (a/ /912 ) (h l+t)],

(3.55)
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p

0 P3

Ps 0

0 0

0 0

P51 P52

P61 P62

P71 P72

Psl Ps2

m

0 P4 0 0 0 0

P6 0 0 0 0 0

0 0 P3s P36 P37 P3s

0 0 P45 P46 P47 P48

P53 P54 0 -1 0 -1

P63 P64 " Pl* 0 " P2* 0

P73 P74 0 P76 0 P78

P83 P84 P85 0 P87 0

where

P3S = P3* sinh ( Wl* Ot h 2 ),

P37 -" P4* sinh ( w3* a h 2 ),

P36 = P3* cosh ( wl* a h 2 ),

P3s = P4* cosh ( w3* c_ h 2 ),

P45 = P5* cosh ( Wl* ot h 2 ),

P47 = P6* cosh ( w3* ot h 2 ),

P46 = P5* sinh ( Wl* a h 2 ),

P48 = P6* sinh ( w3* a h 2 ),

P51 = sinh ( w 1 tr h 1 ), P52 = cosh ( w 1 a h 1 ),

PS3 = sinh ( w 3 a h 1 ), P54 -- eosh ( w3 a h 1 ),

P61 = Pl cosh ( wl a h 1 ), P62 = Pl sinh ( t_1 ot h 1 ),

P63 -- P2 cosh ( ¢o3 cr h 1 ), P64 -- P2 sinh ( w3 a h 1 ),

P71 -" P3 sinh ( w lot h 1 ),

P-t3 = P4 sinh ( w 3 a h I ),

P72 -" P3 cosh ( w 1 ct h I ),

P74 -- /)4 cosh ( w 3 tr h 1 ),
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P81 = P5 cosh (w 1 a h 1)P82 = p5sinh (w 1 ah 1),

PB3---- p6c°sh(w 3 c_h 1)PB4 = p6sinh(w 3ah I),

P78 = -P01 P4*_

P87 = "P02 P6*,

(3.56)

fl= [2B 5 0 0 0 0 0 0 0 ]T,

f2 = [ 2B 6 0 0 0 0 0 0 0 ]T ,

f3---- [0 0 0 0 -B 1 _B 3 B5 _B 7 ]T,

f4= [ 0 0 0 0 -B 2 _B 4 B6 _B 8 ]T ,

f5 = [0 0 0 0 B 1 B 3 _B 5 B7 IT,

f6= [0 0 0 0 B 2 B 4 .B 6 BB ]T .

( 3.57 )

After determining K i and Ki*, ( i ---- 1,..,4) by solving ( 3.54 ) in terms of ¢1

(y), this remaining unknown function may be obtained from the mixed boundary

conditions ( 3.46 ). By substituting from ( 3.35 ) into ( 3.46 a), using ( 3.42 ), and

from ( 3.46 b) by observing that ¢1 (Y) = 0 on L ! we find
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2 bll axx = [ A1 Kl(a)sinh(wlaY) + At K2(a)c°sh(wl cry)

+ A2 Ka(a)sinh(w3 c_y) "{- )_2 K4(a)c°s(w3ay)] a cosa x da

f _..__!__1 .4- 1 )_ r 1 p(y), yE L.+ Bll L ¢1 (t) dt ( t y t-{- y " 2 bll

( 3.58 )

Finally, assuming that L = ( a, b ) or the crack is located along x = 0, a<

y<b, the integral equation ( 3.58 ) may be expressed in the following standard form:

_a 1 _r 1 p(y) . a < y < b[g-__T k(y,t)]¢l(t)dt--- 2Bll bll

( 3.59 )

where the Fredholm kernel, k( y, t), is defined as:

1 ÷_11 fo°¢[ E1 e-a/_llt -[- E 2 e" a/f112tk(y,t)--- t + y

+ E 3 e" a/fill(hi " t) - a/fll2(h 1 - t)+ Eae

+ E s e- a/flll(hl + t) - a//_12(h 1 q- t)+E6e ] da

(3.60)

where the E i (i = 1, 6) are known functions of Ki, Ki* ( i =1, 4) which may be

obtained by solving the equations ( 3.54 ) .
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From the definitionof the function ¢1givenby ( 3.40 ) it is clearthat for an
imbeddedcrack the solution of the integral equation ( 3.59 ) must satisfy the

followingsinglevaluednesscondition:

Iba el(t) dt ----0 . ( 3.61)
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3.4 THE SINGULARITYAT THE CRACK TIP

It is well knownthat the stressfield arounda cracktip is proportionalto r-s,

wherer is a smalldistancefrom the cracktip at whichwe measurethe stressfield,

ands is calledthe powerof singularitywhichshouldbebetweenzeroand one,i.e. 0<

s < 1. If s is lessthan zero,the stressis boundedasr --* 0 and thereis no singularity

at the cracktip. If s is greaterthan one,the strain energydensityis unboundedasr

--* 0, which isphysicallyimpossible.

The value of singularitys is dependenton the crackconfigurationaswell as

material properties.In this work, threecrackconfigurationswill bestudied,namely:

(referringto Figure3.1)

i) embeddedcrack, a> 0,

ii) edge crack, a= 0,

iii) crack terminating at the interface,

b< h 1 ,

b<h 1 ,

a> 0, b=h 1 .

For each crack configuration, the singularity of the stress state around the crack tip

or the irregular points a and b may be examined by using the function theoretic

method described in [31], [32] and [33].

3.4.1 Embedded

For the case of a crack embedded in a homogeneous material, the only

singular term in the integral equation ( 3.32 ) is the dominant term t.--ly and the

remaining kernels are bounded. The singular integral equations can thus be written in

the form:

Iba ¢1(t) dt B.T. _r 1 a> b+ P(Y)_ o Y >
t-y 2 Bll b11

m

(3.62)

where B.T. corresponds to the bounded term.

To examine the behavior of the unknown function el(t) around the irregular

points a and b, following Muskhelishvili [31], we assume that the unknown function ¢1

may be expressed as
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¢1 (t) -= gl(t) __ gl(t) Wl(t)

(t-a)at (b-t) _
(3.63)

where gl(t) satisfies a HSlder condition in closed interval a< t < b and gl(a) ¢ 0,

gl(b) =_ 0. Also (_, _ are the singularities at the irregular points which should satisfy

the condition 0 < Re (a,j3) < 1, and Wl(t ) is any definite branch which varies

continuously on the interval a<t<b.

Define the following sectionally holomorphic function

F 1 (z)= _ Iba ¢l(t)t-z dt , (3. 64 )

substituting equation ( 3.63 ) into equation ( 3.64 ) we obtain

F 1 (z)= 1 Iba gl(t) exp (iTr _) dt
(t-a)at (t-b) l_ (t-z)

(3.65)

Following Muskhelishvili, equation ( 3.65 ) can be written

gt(a) exp (i n" at)
Fz(z)= +

(b-a) 'G (z-a)%in(:ra)

+ gl(b) + F0z(z ) . ( 3.66 )

(b-a)at (z-b)flsin(rfl)

F0z (z) is bounded everywhere except possibly at the end points a, b, where it has the

following behavior

Ck k=l, 2, ( 3.67 )IF01(z)l< pk '
Iz- ekl
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e1 ----a, e2 -- b, Pl <( Re (a), P2 <( Re (/3) and ek, Pk are real constants, that is,

F01 (z) has singularities weaken than ct, /3.

Using the Plemelj formula [31]

1 I b 51(t) dt-- t [Flq-(y) T FI" (Y)], a<y<b (3.68)T a t-z

from ( 3.66 ) it follows that

---1 Iba el(t) dt - gl(a) c°t(Tra)
lr t-y (b-a)/3 (y-a) a

gl(b) cot (7r/3) -{- F01(Y ) ( 3.69 )

(b-a) a (b-y)/3

Substituting equation ( 3.69 ) into ( 3.62 ) we find

gl(a) cot ( _ .)

(b-a)/3 (y-a) _

gl(b) cot (_/3) ---¢1 (Y)

(b-a) a (b-y)/3
( 3.70 )

where ¢1 (Y) contain all the bounded functions.

By multiplying equation ( 3.70 ) first by ( y - a )a and letting y ---* a, and

then by (b-y)/3 and letting y ---* b, we obtain the following characteristic equations

for a, /3,

gl(a) cot ( 7ra) = 0, or cot (_ra) = 0,
(h-a)/3

gl(b) cot ( lr/3)

(b_a)a = 0, or cot (Tr /3) = 0 ( 3.71 a, b )
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1 1 whichare the wellThe acceptableroots of theseequationsare a = _-, fl = _-,

known results in the crack problems. Hence, the fundamental function of the singular

integral equation is

W (t) ---- 1 ( 3.72 )
(t - a) 1/2 (b- t) 1/2

Therefore as long as we have internal cracks, the power of singularity will be 1/2.

3.4.2 E_d_ Crack

This is the case that a ---- 0 and b<h 1. Now the crack is an edge crack with

one crack tip in the medium and the other crack tip going to the boundary.

For this case the integrand of Fredholm kernel, k(y,t) expressed in ( 3.60 ), is

no longer bounded as a---_ oc . Therefore the singular part of the kernel must be

separated and evaluated in closed form. We can write the kernel k( y, t) in two parts.

k( y, t) = k s (y, t) q- k b (y, t).

where ks is the singular part and k b is the bounded part.of k.

( 3.73 )

The singular integral equation can then be written as

[t_-_lyq- ks (y,t)] ¢l(t) dt-t- k b (y,t) el(t) dt----- 2Bl_ " bll

0<y<b. (3.74)

Following the same function theoretic analysis as in the embedded crack case,

the only acceptable roots for the characteristic equation are found to be a = 0 and

= 1/2 (see [34] for details ), that is, for the crack going to the free boundary, there is

no singularity at the crack tip. Therefor the fundamental function of the singular
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integralequationis

W (t)-=- 1 (3.75)
(b- t) 1/2

3.4.3 Crack Terminating at the Interface

This is the case that a> 0 and b - h 1. The problem of interest here is the

singularity at the crack tip y -- h 1. Thus, without any loss in generality we assume a

> 0 and b -- h 1 for the analysis. The similar problem has been studied by Delale in

[27].

For this case the integrand of Fredholm kernel, k ( y, t ), expressed in (3.59),

is no longer bounded as a _ oo when y --* h 1 and t --* hi, at the same time.

Therefore, to study the singular behavior at the interface and to make the kernel

numerically integrable, the singular part of the kernel must be separated and

evaluated in the closed form. Again, we express the kernel k ( y, t ) as

k( y, t) -- ks (y, t) -{- k b (y, t). (3.76)

where k s is the singular part and k b is the bounded part.

To make the manipulations manageable without any loss in accuracy, we obtain the

singular part from the symmetric crack problem shown in figure 3.2. In this case, the

symmetry about the y axis is maintained and we have

u(x,y):u(x,-y),

v(x,y)'=-v(x,-y). ( 3.77 )

Thus, it is sufficient to consider the problem for y > 0 only. Observing the general

solution of the displacement u ( x, y ) as expressed in ( 3.27 ), the coefficients of the
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nosymmetricterms sine and hyperbolic sine must be zero, i.e. K 1 = 0, K 3 = 0, KI* =

0 and K3* = 0, which makes the analysis considerably simpler and makes it possible

to obtain the closed form expression of singular kernel ks ( Y, t ).

Following the same procedure described in [27], it can be shown that ks( y, t )

can be expressed as follows:

ks = ks1 + ks2 + ks3 + ks4

= PII
w 1 h 1 -t- (hi- t )/_11

(w 1 hl + (h i _ t)//_11)2 _ (w 1 y)2

+ PI2
w:t h 1 q- (h 1- t )/fl12

(w 1 hl q_ (h 1 . t)/fl12)2 _ (w 1 y)2

+ PI3
w 3 h 1 4- (h 1- t)/_ll

(w 3 h I -4- (h 1 - t)/$11) 2 - (w3 y)2

w 3 h 1 + (hy t )/_12 ( 3.78 )
+ P14 (w 3 hi + (h 1 _ t)/_12)2 . (w 3 y)2

where Pli ( i = 1, 4 ) are the expressions of material constants which are obtained

from the asymptotic analysis.

The governing singular integral equation then becomes:

[_-4-_ ks (Y,t)] ¢1(t) dt 4- B11
k b (y,t) el(t) dt

1 p(y)
-- " 2 Bll bll

kb(Y,t)=k (Y,t)- ks (Y,t).

0<y<b,

( 3.79 )

We again define

99



(3.80)¢1 (t) = gl (t)
(t- a) 1/2 (h 1 - t)/_ = gl (t) Wl(t ) .

Here the singularity _ will be different from 1/2 because of the additional singular

kernel ks(y,t ).

To examine the singularity /5, we use the symmetric case as the illustration.

Referring to Fig. 3.2 the singular integral equation may be expressed as

1 Jfhl [t____ly+ 1 ks (y,t)]¢l(t)dt = bounded terms .--W- _hl

hi_< y < h I (3.81)

Following Muskhelishvili, the unknown function ¢1(t) can be written

¢1 (t) = F 1 (t) ( 3.82 )

(hi 2 - t2) _ '

where Fl(t ) is bounded and Holder - continuous in the interval I t I< h 1, and 0< Re

(8) <1.

Define the sectionally holomophic function:

Ihl ¢1(t)(z) = _ _h 1 t-z Ih Fl(t ) exp(i 7r/_) dt ,
dt =_ _h 1 (t-hi) _ (t + hi) _ (t-z)

Then, the equation ( 3.83 a ) can be written as [31]

(3.83a)

¢ (z) -- F1 (- hi) exp ( i _r 7)

(2 hi) ¢ sin (r _) (z + hi)/_

F: (h_) + V0 (z)
(2 hi)/_ sin (_r /_) (z- hi) _
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where ¢0 (z) is bounded everywhere except at the end points + hi, where it has the

following behavior

1% (z)l <
Fl(+h)

Re (80) < Re (3) •

( 3.84 )

When z -- y is on the cut, using Plemelj formula:

¢ (Y) = F 1 (- hi) cot (Tr fl) F 1 (hi) cot (Tr /3) q_ _. (y)

(2hl) _ (hl+ y)/3 (2hl) _ (h 1- y)3

{y] < h I (3.85)

Now consider the following integral

1 [hi ks 1 (y,t) el(t) dt
I1 = -_- j-h I

1 ihl"-if- _hl Pll

w lh I + (h I -t)/311

(w 1 hl + (h 1 _ t)//311)2 _ (w I y)2
el(t) dt

I_hl f111P11_ 1 (. )-- "-W- 2

¢1(t)

t-[h 1 + 311Wl (hi-Y)]
dt

Ihhl 311Pll ) el(t) dt+ _ ( " 2 -- t- [ h I -_- ,_'11 Wl ( hl -F Y)] '

(3.86a)
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from ( 3.83a)

11 1 Ihl1 flllP1= "-e- (" 2 1) Fl(t )exp(ilr 8)

(t-hl) j3 (t + hi) 8 ( t- [ h I + 811 wl ( hi- Y)])

dt

Jr- @ Ihhll ( 811Pll Fl(t) exp (i 8 _r )2 ) dt,
(t-h1) 8 (t +51) 8(t-[h 1 + 811 wl (51 +Y)])

( 3.86 b )

when z= h 1 + 811 wl (hi - Y) and z= h 1 + 811 wl (hi + Y) are outside the

branch cut we have

I1 F1 ( - hl)=- + Ol* (y)
(2 51) 8 sin (_r 8) [ 811 _1 ( hl -{- Y)]B

° F1 (- hi) "_- ¢2" (Y)

(2 hl) fl sin (Tr _3) [ 811 _1 ( hl" y)]B

( 3.83 c )

where O1" (y) and 02* (y) are similar to ¢0" (Y) in equation ( 3.83 b ).

Observing that F 1 (y) =- F 1 (-y),theintegrationI 1 can be written as-

Ii = ( /_11Pll F1 (hl) 1

2 ) (2 hl) _ sin (Tr 8) ( 811 Wl )8 [ (h I . y )B
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Jr 1

(h 1 Jr y )81"

( 3.87 a )

Following the same proce(iure, we can obtain the following integrations:

I hl ks2 (y,t) el(t) (iti2 = __1 -hl

-- ( _ ) F1 (hi) 1
2 (_hl) zsi.(_8)(z_2_)8 [ (hl_y)8

I hl ks3 (y,t) el(t) (it13 -- _ -h 1

( 3.87 b )

Jr 1

(h 1 Jr y )8 ] '

= ( Zl_Pls2 ) FI (lh)
(2 h_) z sin (_ 8) ( Zn _3 )8

1 )Z ]'+ (hI Jr Y

(3.87c)

I4- 1 rjh_ ks 4 (y, t ) el(t) dt
- _ -h I

---- ( #12P142 )
F1 (hi)

(2 hi) _ sin (It ]_) ( 812 w3 )/?
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_1

-]- (hl+y)_ ]"

( 3.87 d )

Substituting 11 ,I 2,I 3 , I4 and (3.85)into(3.81) and lettingy-- h 1 and noting

that F 1 ( h 1 ) _ 0 , the characteristic equation for _ becomes:

-2 cos (Tr_ ) + _11 Pll 1 -Jr" ,/_12 P12 1

_11 P13 1 1
(811 w3 )_ ÷ _12 P14 )_(_12 _3

=0.

(3.88)

This is the same equation found in [ 27 ]. Choosing the orthotropic elastic constants

close to isotropic constants numerically we find the same singularity power computed

in [ 23 ] and [ 30 ]. The characteristic equation ( 3.88 ) can be solved numerically to

obtain 8- For practical orthotropic materials equation ( 3.88 ) has only one root

between 0 and 1. If material II is stiffer than material I, the root will be less than 1/2.

But if material I is stiffer than material II, then the root will be greater than 1/2.

For the two bonded strip problem, when a > 0 and b = hi, the fundamental

function is

wl (t) =
(t- a) 1/2 (h 1- t) _ ' (3.89)

where _3 is the root of equation ( 3.88 ).
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3.5SOLUTIONOF THE SINGULAR INTEGRAL EQUATION AND THE STRESS

INTENSITY FACTOR

The solution of the problem depends on the unknown density function ¢1

which can be obtained by solving the singular integral equation ( 3.59 ) numerically

using any one of the known techniques [ 35 ], [ 33 ] . In this work the quadrature

method described in [ 33 ] is used. To solve the integral equation:

I_ ] p(y)[t--ly +k ( y, t ) ] el(t) dt ----- _ bl-'---_ ,

a<y<b,

( 3.90 )

we first normalize the interval ( a, b ) by defining:

b+a
t= b a r+ 2 (a_<t < b, - 1__ r_< 1)

b-a b+a
Y-- 2 s+ 2 ' (a<y <b, -1 _s _ 1)

¢l(t)----F(r),

b2a k(y,t):k(r,s),

_r 1 p(y)_p (s).
2 Bll bll

Equation ( 3.90 ) may then be expressed as

( 3.91 a - e )
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I11 I r_---)s+kCr,s)]V(r)dr =pCs) -1 < s < I . (3.92)

The unique solution of the singular integral equation ( 3.92 ) can be obtained for

given crack configuration. Three typical crack geometries will be investigated

separately in the following subsections.

3.5.1 Embedded Crack

In this case the solution of the singular integral equation ( 3.92 ) will be

obtained under the single - valuedness condition

fll F(r)dr =0. (3.93)

Since F(r) has a power singularity 1/2 at the end points the solution will be sought in

the form

F (r) f(r)
= _ ( 3.94 )

where f(r) is Holder continuous in the interval - 1 < r < 1.

Following the procedure described in [ 33 ] we get the system as follows

n-1
1 K*-_- ( Sk, rz ) f(rl) +

i=2
K* ( Sk, ri) f(ri) ++ K* ( Sk, rn ) f(rn)

= _a/_Lp ( sk), ( k = l, ...., n-l),

(3.95)

and

n-I
1

-2- f(rl) + Z f(ri) ++ f(rn)--0 , (3.96)
i=2
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where

K*(s,r)=-y_g-_ls +k(r,s),

r i = cos (__1 lr), i= 1, .... ,n

2k-1 7r), k= 1, ..... ,n-1.sk = cos( 2n- 1
( 3.97 a - c )

From (3.95) and (3.96) nunknownsf(r i), i = 1, .... n can be solved.

3.5.2 E__d_ C_a_k

For the case of an edge crack the singular integral equation (3.92) will be the

same but the single - valuedness condition (3.93) for the displacement will not be

valid anymore. The unknown function F(r) will have a 1/2 power singularity at one

end and no singularity at the other.

Considering an edge crack a -- 0, F(r) will be singular only for r = 1.

Therefore in ( 3.94 ) ( 1 + r ) 172 is included with the extra condition that

f(-1) = f(rn)'- 0. ( 3.98 )

Given this condition the number of unknown is reduced to n - 1 and using

equations ( 3.95 ), f ( r i ), ( i = 1, ..., n - 1 ) can be easily solved.

3.5.3 Crack Terminating: at the ][_terface

For the case in which a > 0, b = h 1, the singularity at the end points are a =

1/2 and fl, where fl is obtained from equation ( 3.88 ). Therefor the solution will be

sought in the form
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F (r) = f(r)
(l+r) l/2(1-r)_ '

(3.99)

Again, the single - valuedness condition will be

fl F(r)dr =0
-1

( 3.100 )

Following [33], we obtain:

K* (sk, r i) W (r i) f(r i)- p (s k),
i----1

k = 1, ..... , n-1 , ( 3.101 )

and

E W(ri)f(ri)=0
i=l

(3.102)

where

pn (- 1/2, - fl) (ri) = 0, i= 1, .... ,n ,

Pn_l (1/2, 1-fl) (Sk) =0, k= 1, .... ,n- 1 , (3.103a, b)

and W ( r ) is the weight of the Jacobi polynomials

pn (-1/2, -fi) (r).
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Solvingthe n x n systemof linear equations, the n unknowns f ( r i ), ( i = 1, ... , n),

can be obtained.

3.5.4 The _tress Intensity Factors

In this problem we are mostly interested in the computation of the stress

intensity factors which may be expressed in terms of the density function F ( r ).

For the embedded crack where 0 < a < b < h 1 the stress intensity factors are

defined as follows:

K(a) = Lim ,_2(a-y) _x(0,Y)
y---* a

K(b) : Lim _2(y-b) ax(0,y) .
y---*b

( 3.104 a, b)

Using the above definition and as described in [ 34 ] we obtain:

K(a)---- 2 Bll bll Lim _2(a-y) ax(0,y)
yl---*a

--_ 2 Bll bll f(-1 ) _(b- &)12 ,

K(b) =- 2Bllbll Lim _2(b-y) _x(0,Y)
yl--,b

where

=- 2 Bll bn f( 1 ) a)/2

2p
Bll bll -- _-k ,

(3.105a, b)

when the material is isotropic.
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For the caseof anedgecrack( a = 0 ) the stress intensity factor becomes

k(b) =- 2B n bll f(1) _ (3.106)

For a crack terminating at the interface, the stress intensity factor at b ---- h 1 can be

obtained from simplified symmetric crack problem (see Figure 3.2), described in

subsection 3.4.3, when a - h 1, we have

1bll, _xx* =
[ AI* K2(a)c°sh(wl *a Y2)

Jr A2* K4*(a) cosh(w3*a Y2) ] a cosa x da

x--*0 b11" axx*
[ )_1" K2(_)c°sh(wz*(_ Y2)

_- A2* K4*(a) c°sh(w3*a Y2) ] a da

Jhl= _h lks* (y2, t) 51 (t) dt
( 3. lO7 )

where, the quantities with * represent the corresponding quantities in the second layer

and ks* is as follows ( see [27] for details )

ks* - ksl* + ks2* + ks3* -4- ks4*

, ,_* h: + (h:- t )/_::
= Pll (Wl, hl + (hi. t)/flll)2 _ (Wl* y2)2

+ P12*
_1" hi + (hi- t )/fl12

(Wl* h 1 -t- (h 1 - t)/fll2) 2 - (Wl* Y2) 2

_3" h_ + (h 1- t )/fill

+ P13* (w3, hl + (h 1 _ t)/flll)2 _ (w3* y2)2

* w3* h.1 "Jc (h 1- t )/ill2

-t- P14 (w3, hl + (h 1 _ t)/fl12)2 . (w3* y2)2

( 3.108 )
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Defining

k(h,) -- Lira 2 3
Y-'*" h 2 (Y2 + h2 )8 _x*( O,y),

( 3.109 a )

and following a procedure similar to that used in obtaining ( 3.86 ), the stress
intensity factor at the crack tip h 1 is found to be

k(h l) Sll, fh_ "
"-" bll* . 1

sin 7/" /_

× { &1 Pn*------.L_I

(Sn %* )Z Jr fl12 P12"

(812.01")8

+
BiI1 P13* .--.---.__.._l

(811 w3"3_ ) + ]5'12 P14*

(812 _,s*'_7_)} "

( aAo9 b )
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3.6RESULTSAND DISCUSSION

The problem is solved numerically for three particular crack configurations

which are, referring to Figure 3.1, the embedded crack ( 0<a<b<h 1 ), the edge crack

( a=0, b<hl) and the crack terminating at the interface (a=0, b=hl). The results

refering to the stress intensity factors are shown in Figures 3.3-3.7 and Table 3.3.

Generally the results presented in these figures and the table are self-explanatory.

The results given in this study are obtained for self equilibrating crack surface

tractions. If the external loads are applied to the layered material at locations

sufficiently far from the region of cracks, the crack surface tractions in the

perturbation problem would be uniform, For example, if the medium is loaded in

tension parallel to the x - axis away from the crack region the crack surface tractions

are constant and are related by

1 - Vxz 1 l/zx 1 1 - Vxz 2 k'zx 2

Ex 1 Px = Ex 2 P2 , ( 3.110 )

for plane strain and

Pl P2
= _ , (3. III )

for plane stress. Here the subscripts 1 stands for the properties in material I and 2 for

material II. In this study only plane strain case is considered.

To investigate the effect of orthotropic material properties on stress intensity

factor in the cracked plane, we first rewrite the singular integral equation ( 3.90 ) in

the following form:
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'I: t + y,,,l dt: p y,,
a<y<b,

p

(3.112)
, OUl

here Pl = 2 BII bll, ¢1(Y) = -_- ( 0, y ) ,

and p(y) is the self equilibrating crack surface traction in material I, and the subscript

1 again refers to the material I.

The physical meaning of #* in this general form of a crack problem is

revealed in the following relationship ( see [ 36 ] )

G = 2-_ 7r kl 2,

here G is the energy release rate, and k 1

crack.

For isotropic material p* isgiven as:

(3.113)

is the stress intensity factor for mode I

4 p where
1+_'

and

t¢ = 3 - 4v for plane strain,

3 - v for plane strain,
_-- l+v

for plane stress,

]_, = E , for plane strain,
2( 1- _2 )

and for orthotropic materials

( 3.114 a )

/_* = 2 Bllbll , ( 3.114 b )

where bll is defined in ( 3.2 ) and Bll in Appendix II. It can be seen that p* is
113



somehowa measurementof material orthotropy in the crack problem.Greater _*
standsfor "stiffer" material.

Table 3.1 shows the different elastic constants used throughout the analysis.

Materials 1 and 2 are orthotropic which are fiber- reinforced composite laminates.

Note that material 2 is the same as material 1_ except that the axes are rotated 90 o

about the z axis. Materials 3, 4 and 5 are isotropic. Generally speaking, material 3 is

steel, 4 is zirconia and 5 is Alumina, both 4 and 5 are ceramics. Table 3.2 shows the

material pairs A to I for which extensive numerical results are given. Choosing the

same materials and letting a, b, h 1 or h 2 go to proper limits we recover all the special

cases considered in [ 23 ], [ 30 ] and [ 34 ].

Figure 3.3 shows the stress intensity factors in two-orthotropic bonded layers

with an embedded crack of half length 1 -- _ ---- -_- . Note that as the crack tip

b approaches the interface ( i. e., as c/l ---* 3 ) k b tends to zero for/_2" > /_1 and to

infinity for P2* < /_1"" This well - known behavior is due to the fact that for b = h I

the power of the stress singularity _ is less than 0.5 for P2* > /_1" and greater

than 0.5 if #2" < Pl* . For these cases, the definition of the stress intensity factors

are given by equation (3.104). For the material combinations used in this figure fl ----

0.520 for pair A and _ --- 0.481 for pair B. Also note that as the crack tip approaches

the free boundary as expected Ka tends to infinity.

Stress intensity factors for an edge crack in two-orthotropic layers and two-

isotropic layers are shown in Figures 3.4 and 3.5. In these cases too note that as the

crack tip b approaches the interface k b tends to zero for /_2" :> /11" and to infinity

$

for P2 <: /_1" • Also note that as the crack length decreases the stress intensity

factor approaches 1.1215 for isotropic material in Figure 3.5 and 1.101 for orthotropic

material in Figure 3.4 which are the value obtained for the semi-infinite plane having

an edge crack of length b. Figure 3.6 shows the effect of thickness ratio on the stress

intensity factor in two- orthotopic layers with a pressurized edge crack. The results

for the crack terminating at the interface are shown in figure 3.6 (the curve

corresponding to _ -- 1 ). In all these figures the Stress Intensity Factors are

obtained from (3.106) for edge crack and (3.109) for crack terminating at the

interface.

Figure 3.7 shows the Stress Intensity factor in two-orthotropic layers
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containingan edgecrack and subjectedto uniform bendingaway from the crack

region.In the uncrackedtwo-layerplatethe relevantstressis givenby

_rxl(Yl) =" Pl (Yl) =- Pb( 1-Yl / Cl),

Ex1* hl2 ÷ 2 Ex2* h I h2 4- Ex2 h2 2

ci = 2(Exlh 1+ Ex2h 2) '

0< Yl < hl ,

( 3.115 a, b )

Ex* = Ex , for plane stress

Ex for plane strain
1- Uxz Vzx

where Yl = Cl determines the location of the neutral axis and the constant Pb is the

magnitude of the stress at the plate surface which is related to the bending moment

M by

3 clM

Pb -- Cl 3 +( Ex2, / Exl,. 1) ( c 1- h 1 )3 _[_ Ex2* / Exl, ( hl _{_h2. Cl )3

( 3.116 )

Table 3.3 shows the Stress Intensity Factors for an edge crack under constant

pressure and bending conditions for material pair I, that is, for a homogeneous

isotropic strip. These results are given here for the purpose of comparison. Tables 3.4-

3.7 show the effects of material combinations and properties on the power of stress

singularity fl which is obtained from equation ( 3.88 ) for a crack terminating at the

interface. All the results are obtained for plane strain case. Results in Tables 3.4 and

3.5 are given for fixed elastic properties in material I and varying elastic properties in

material II. These results are for both isotropic and orthotroplc material pairs. To
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give some idea about how the material constants in material II effect fl for a full

.
range of P2 hypothetical material constants are used. Here p* are calculated from

( 3.114 ). From these tables note that as the second material becomes "stiffer", i.e.

as P2*/ Pl* increases, the value /_ decreases in a certain range of P2*/ Pl*

Beyond that range, the ratio P2*/ Pl* has almost no effect on ft. It is also

important to note that the value /_ is heavily dependent on the material parameters in

the first layer due to the fact that the crack is in the first layer. For the orthotropic

material pairs results in Tables 3.4 and 3.5 correspond to three different orthotropic

material pairs with #1" values of 1.35, 12.078 and 61.6 (GPA). It is clearly seen that

when the "stiffeness" in the first layer decreases,/_ becomes smaller.

The effect of individual material constants in the second layer on the power of

stress singularity /_ are examined in Tables 3.6 and 3.7. The results are only done for

partial variations of the variable c because materials with the other half variations arc

material of type II. In Tables 3.6 and 3.7 material I is fixed as an isotropic material

and material II is the same as material I except one material constant is changed

which is Ey in Table 3.6a and Gxy in Table 3.6b. We can see that Ey in the second

layer almost have no effect on fl because the crack located in the y-z plane. In

contrast to this Gxy in second layer has much large effect on ft. Similar effects are

studied for the fixed orthotropic materials I. The results are shown in Tables 3.7. As

expected Ex2 / Exl has the most significant effect on ft. The effect of Gxy2/Gxy 1 on fl

is similar to the isotropic cracked layer.

Finally it should be pointed out that the accuracy of the numerical results for

Stress Intensity Factors is not uniform. For Stress Intensity Factors at an imbedded

crack the convergence was relatively fast. However, in the calculation of the Stress

p *, there wereIntensity Factors for an edge crack, particularly for Pl* > 2

convergence difficulties for b _ h I and b = h 1.
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3.7 RECOMMENDATIONS

In the presentwork, a general formulation of the fracture problem of layered

orthotropic strips with a crack perpendicular to the interface is given. The

formulations done only for the case where both materials are of type I. This would

have a limitation on the choice of the materials. Following the same procedure, the

problem can also be studied for orthotropic materials of type II, or for the

combination of type I and type II.

In this study the crack is limited in the first layer only. A further study could

be done for the case when the crack crosses the interface, when there is a T shaped

crack with the crack going along the interface and when there are cracks in both

layers.

In our formulation the thickness of the adhesive bonding the layers has been

neglected. The study of the adhesive also can be recommended. Also, the bonded

materials with more than two-layers could more realistic for the study of the

composite materials, but it requires lengthy algebra.

There are many other problems to be studied in the fracture of bonded

materials. We hope that our work will have its contributions in the study of these

problems.
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Chapter 4. Surface Cracks in a Two-layer Orthotropic Plate

4.1 INTRODUCTION

The surface or part-through crack problem in a structural component which

may locally be represented by a "plate" or a "shell" is certainly one of the most

important problems in Fracture Mechanics. It is a truly three-dimensional problem in

which the stress field perturbed by the crack interacts very strongly with the surfaces

of the solid. Because of its complexity generally the problem seems to lend itself only

to numerical techniques. At the present, a neat analytical treatment of surface crack

problem, even for the linear elastic isotropic solids, appears to be intractable.

Consequently, the available solutions of the problem very heavily rely on some kind of

numerical technique such as the finite element method [ 37, 38 ], the alternating

method [ 39, 40 ], the boundary integral method [ 41 ], the finite element alternating

method [ 42 ], the method of weight functions [ 43 ], and the body force method [44].

For reviews of various methods and solutions see [ 45, 46 ]. Also see [ 21 ] for the

extension of various methods to the shell problem.

The line-spring model, proposed by Rice and Levy [ 47, 48 ] and incorporated

in a plate theory that allows for transverse shear deformation [ 2, 3 ], competes with

these methods because of its simplicity and relatively high accuracy. Basically this

model transforms the part-through crack problem into a through crack problem by

making use of the corresponding plane strain edge crack solution. Figures ,1.2-4.5 show

the comparisons of Line-Spring model with the finite element method and the effect of

transverse shear in a homogeneous plate containing a surface crack and subjected to

membrane and bending loads. It may be seen that this model indeed gives very good

results.

Because Line-Spring model allows for the solution of the three-dimensional

surface crack problem within the two-dimensional plate theory, it reduces the

computational effort considerably. Once the verification of this model has been

established more extensive parameter studies can be made. Due to the lack of other

solutions for the non-homogeneous plate, this verification is done only for the

homogeneous plate [ 21, 49 ]. Also it is important to point out that for surface cracks
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tile most important point is the deepestpenetrationpoint of the crackfront which lie

in the center of the more accurate and applicable area of this model. In this study

most of the results are given for quantities at the deepest penetration point. \Ve refer

to [ 21 ] for the behavior of the surface crack around the end points.

In this study the surface crack problems ( Figure 4.1) are solved for a two-

layer orthotropic plate under uniform tension and bending moment with the surface

crack penetrating only through one of the two layers. This restriction is due to the

fact that the corresponding two-layer edge-notched ort!mtropic plane strain results are

available only for this geometry and that the line spring model for cracks intersecting

the bimaterial interfaces has not yet been formulated. The solution of the plane strain

problem needed in this study is given in Chapter 3 where extensive numerical results

are provided for various material combinations. Among these material combinations

considered the following are of considerable practical interest: ( a ) fiber reinforced

laminated composite materials; (b) ceramic and metal bonded structural components,

and ( c ) the fihns on elastic substrates used in the microelectronic devices. The

results given for all these material combinations are for various geometrical

parameters of plates and cracks. Also the effects of material orthotropy on the stress

intensity factors are examined.
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4.2THE LINE-SPRINGMODEL

4.2.1The Description of Line - _ Nodel

The Line - Spring model was first proposed by Rice and Levy [ 47 ] in 1972

and since then many improvements and modifications have been made. We refer to

[ 21 ] for a literature survey and for various modifications of the model.

Briefly, the model allows one to use a plate theory to formulate the problem

by removing the "net ligament", and replacing it by unknown, thickness averaged

stress resultants which may then be treated as crack surface loads in a through crack

problem. Figure 4.6 illustrates this process for Mode I crack problem. This technique

reduces by one dimension the complexity of the analysis. Moreover, it allows both

through and part-through crack problems to be solved with the same plate theory

formulation.

Recall that in Chapter 2, the two-dimensional formulation of through crack

problem in a plate is solved as a mixed boundary value problem with the mixed

boundary conditions as follows:

Nx (0, y )=- N× ec' ,

u0(0, y)=0,

]y[<a,

lyl>a,

and

Mx (0, y)=-Mx °°,

q_x (O,y)= O,

lYl<a.,

lYl>a,

(4.1)

where the general principle of superposition is used to account for the loading Nx _

and Mx c_ applied to the structure at "infinity" or away from the crack region.

In the case of part-through crack problem the net ligament is replaced by

appropriate resultants N and M ( Figure 4.6 ) and therefore, the corresponding mixed

boundary value problem must be solved under the conditions:
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Nx(O,y)=-Nx °° +N,

uo(O,y)=O,

[Yl<a,

lyl>a,

and

Mx(0, y)=-Mx _c + M,

Cx ( 0, y )= o,

lY[<a,

tYl>a.

(4.2)

Thus referring to ( 2.33 ) for the corresponding through crack formulation, tile

governing equations for the two-layer plate with a surface crack may be expressed as:

fa
Pll l

[t-y
-a,

+ kll (y, t)] gl(t) dt +

P12 j.a ]7r [ t-y
-a

+ k12 (y,t)] g2(t ) dt =- Nx °c + N ,

fa

P12 ]

[ t-y
-a

P22
7r

+ k12 (y,t)]gl(t ) dt +

a ] + k22 ( v, t ) ] g2( tl ) dt = - Mx °c' + M[ t-y _
-a

[y <a,

where

(4.3)

gl(t)= auo(t')
Ot

acx(t)
g2(t) = at

(4.4)
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The unknownsin equations( 4. 3 ) are N, M, u0 and Cx, where N and hi are net

ligament stress resultants illustrated in Figure 4.6, u 0 is the in-plane displacement of

the x direction in nuetral plane and _b× is the rotation of the section x=eonstant. Since

there are four unknowns and only two equations more information is needed. In the

line-spring model, N and M are linearly related to u 0 and Cx in the manner of a

spring. After substitution of these relationships into equation ( 4.3 ), gl or g2 ( or Ux

or Cx ) can be numerically determined from which all quantities of interest can be

calculated.

4.2.2 The Compliance Functions

The Line-Spring model is based on two assumptions. The first, previously

stated and illustrated in Figure 4.6, involves replacing the net ligament ( in which the

state of stress is two-dimensional ) by resultant forces which are functions of y only.

The second assumption is that the stress intensity factors along the crack front may

be obtained fi'om these resultant forces as though the stress state were one of plane

strain. Clearly, very near the end points tile assumption would not be valid.

Therefore, this model is most accurate in the center of the crack and improves as the

crack gets longer for a given crack depth, i.e. as plane strain conditions are

approached.

In order to make use of this analogy, the plane strain stress intensity factor

solutions for the corresponding two-layer edge-notched strip must be available. Such

solutions used in this study are obtained fi'om the results of Chapter 3 and along with

a curve fit ill the form of:

kl n

gt (_) = ¢t _ ='_'- E Ctk (k,
k=0

kl n

gb ( _ ) m_ Orb__ _.=_"_ E Cbk _k,
k=0

o< _< 0.9,

where

(4.5)
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= L(y)/h, ( Figure 4.6).

In the literature, gb and gt are often referred as shape functions which can be

obtained once the edge cracked plane-strain results are given. Then, the stress

intensity factor for the strip can be expressed as

K I = _[ h ( a t gt + ab gb)"

(4.6)

In these expressions at( y ) and ab( y ) represents the averaged net ligament stresses

as follows:

_ N M
a t -- --_--, and a b -- h2/6 •

(4.7)

The derivation is based on expressing the energy available for fracture along

the crack front in two different ways. First, in a plate with an edge crack subjected to

a uniform tension N and bending moment M ( Figure 4.7 a ), if K is tlle stress

intensity factor given by the plane strain solution, from the crack closure energy, the

energy ( per unit width ) available for fracture may be obtained as [ 50, 51 ]

G= 0_____L_0 ( U - V ) = A I,:l 2

where

(4.8)

or

)_ _ 1- u 2
E

for isotropic materials,

= ( e112 e33 ) 1/2 [ (-E_33e11) 1/2 -4- 2 e132e33+ e55 ] 1/2,

for orthotropic materials.
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SeeAppendixI for expressionsof eij. With the assumptionof coplanarcrackgrowth,
equation( 4.6) aresubstitutedinto ( 4.8) to obtain,

= _0_ ( U - V ) = h _ ( o't 2 gt 2 + 2 a b o"t gt gb + °'b 2 gb 2 )"G

(4.10)

Next consider the crack to extend from L to L + AL under "fixed load"

conditions. The resulting changes in U and V are as follows ( Figure 4.7 b ):

dU = N d{S + M dO,

dV =+ [ N ( 6 + d6) + M( 0 + d0)]-@( N 6+ M0)

=+( N d_ + M d0).

( 4.11 )

Equations ( 4.11 ) give the energy available for a crack growth dL as follows:

d(U-V)= +(Nd6+Md0).

( 4.12 )

Note that N and M are fixed loads, and for a change of dL ill the crack length we

have

d6- 06 dL, dO = 00 dL.
- --0---L- 0L

Thus, from ( 4.12 ) and ( 4.13 ) it follows that

O60 (u-v)= (N 0LG-0L

and by using ( 4.9 ) we find

o@
--+M_),

( 4.13 )

( 4.14 )

@(N 06 06_+M_)= h A ( at 2 gt 2 + 2 o"b a t gt gb + °'b2 gb2 ),

(4.15)
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where gt andgbareknownfunctionsandexpressionsof a t and (r b are given in (4.7).

Assuming

[°t]_rb

and

I 11[;lw2 0

G(():
gt gtgb 1

gtgb gb 2 J '

equation ( 4.15 ) may be written as

( 4.16 )

tl r T O w : 11 ,_ r T G r.
2 OL

(4.17)

From ( 4.17 ) it is seen that

a 02

0L
-- 2 ,_ G r.

( 4.18 )

By observing that G is a function of L, r is independent of L and co = 0, for L = 0,

from ( 4.18 ) we find :

-L

w:2,_h ( --i7 0
GdL)r=2h A[A]r,

(4.19)
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where

L
= f GdL= [aU] ,[A3 _- o

j.L 1 fLall = T 0 gt2 dL , a12 = a21 = T 0 gt go dL ,

.L

J gb 2 dL.&22 = T 0

( 4.20 )

From ( 4.19 ) and ( 4.20 ) one may write

[]_t 1 F

o.b -- 2 1_ A +0

where

F- [Tij]= [A] -1.

( 4.21 )

Thus, the relationship between ( N, M ) and ( 6, 0 ) may be expressed as follows:

[,] [-]= h 2
_'I -6_b

where

C = [ Cij ],
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and

Cll = 3'11, C12 _ C21 _ + 712_

h 2

c22 ----- 36 ?22"

( 4.22 )

From definition ( 4.4 ) and observing that ( Figure 4.7 )

,S = 2 u0 (0, y),

0=2 gJx (0, y),

( 4.23 )

we obtain

; Eel1c1 1[ cllc12 c22 gc2

V

_c,--I_glut/dr

go2 = I g2(t) dt.
°a

( 4.24 )

Equation ( 4.24 ) gives the information that is needed for substitution into

integral equations ( 4.3 ). From this the surface crack problem may be solved

numerically in a manner similar to the case of the through crack problem.
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4.3SINGULAR INTEGRAL EQUATIONS

4.3.1TheSinzular Integral Enuations

As mentioned in subsection ( 4.2 ), the singular integral equations for part-

through crack problems may obtained directly from the corresponding through crack

equations combined with the compliance function ( 4.24 ). From ( 4.3 ) and ( 4.24 ),

they may be expressed as follows:

,a

/tit j 1_r [ t-y
-a

-- + kll (y, t)] gl(t) dt +

a

P12_ f [ t- y] 4- k12 (y, t ) ] g2( t ) dt
-a

Y Y

c11 f gl(t)dt - %2 f g2(t)dt =- Nx 'zc
A -a A -a

/_127r I a
-a

1 + k12 (y,t)]gl(t ) dt +[ t-y

_a

1122 j [ 17r t-y
-a

4- k22 (y, t ) ] g2( t )dt

iy ;vc21 gl( t )dt c22 g2( t ) dt = - Mx _c
A -a

[Yl<a.

(4.25)

X,Ve refer to ( 2.33 ) and ( 2.34 ) for tile expressions of /,tij and kij, ,_ can be obtained

from ( 4.8 ), and gz( t ) and g2 ( t ) are the unknown functions defined in ( 4.4 ).

Also these singular integral equations must be solved under the following

single-valuedness conditions:
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•a _a
J gl(t)dt = O, and f g2(t) dt = O.

-a -a

(4.26)

Since tile dominant part of the system of integral equations ( 4.25 ) has only a

Cauchy kernel ( which is the same as in the through crack case ), the solution is of

the following form:

fi (t) (i= 1,2) ,
gi( t, ) -- 4a 2 _ t 2 ,

( 4.2r )

where tile function fl and f2 are bounded ill the closed interval ] t I < a.

Following similar numerical procedures as in the through crack case, described

in subsection (2.3.1) of Chapter 2, by first normalizing the equations from -a< 3' < a

to -1 < s < 1, and then using the collocation method, the unknown functions gl ( 3' )

and g2 ( Y ) or fl ( Y ) and f2 ( Y ) may easily be determined numerically.

4.3,_ Th___e_tress Intensitv Factors

After solving tile singular integral equations ( 4.25 ) under tile single-

valuedness conditions ( 4.26 ), the unknown functions gl ( Y ) and g2 ( Y ) can be

obtained. Then, using the expressions ( 4.24 ), the stress intensity factor K( 3' ) along

the crack front may be determined as follows:

I(l = _ ( °'t gt + eb go )'

( 4.28 )

where _rt -- ]-]7'N and a b - h21aM , which are equivalent net-ligament stresses and gt
t_

and go are known functions obtained from the corresponding edge-notched plane

strain results.

Notice that while the solution of a through crack gives the stress intensity factor at y

= +a, the line-spring model provides stress intensity factors along the front of a

surface crack, that is -a< y < a.
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Sincethe modelis most accuratein the centralportion of the crack,it is best

appliedto problemswherefailure occurswhen the surfacecrackgrowsthrough tile

thicknessleadingeither to leakingor to the developmenlof a throughcrack which

then growsin length to a critical size.Becauseof the planestrain assumption,the

modelbecomeslessapplicablenearthe endsof the crack.Becauseof this the results

givenin thesestudyaremostlyat the maximumpenetrationpoint and for a/h_>0.5.
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4.4 RESULTS AND DISCUSSION

The main interest of the study ill this chapter is in evaluating the stress

intensity factors in a two-layer isotropic and orthotropic plates with a surface crack.

The similar problems for homogeneous one-layer isotropic and orthotropic plates have

been considered before in [ 21 ], [ 49 ], [ 22 ] and elsewhere. Some of those results are

shown here for the purpose of comparison.

The elastic constants of the material combi'nations used in the numerical

examples are given in Tables 4.1 and 4.2. The material combinations considered here

are of important practical interest: Material Pair A and B are fiber reinforced

laminated ( graphite-epoxy ) composites, which have long been widely used in

aerospace industry; Malerial Pairs C, D and E are ceramic and steel bonded

structural components, which have recently been receiving increasing attention in a

number of applications of metal/ceralnics joints [ 52, 53 ]. Material Pair I represents

an isotropic homogeneous plate which is included here for the purpose of comparison.

Extensive numerical results are given for all these material combinations with various

geometrical configurations.

As in previous studies, the stress intensity factors are given in their normalized

form. For the Line-Spring model, the stress intensity factors are normalized in two

different ways. First, they are normalized with respect to the corresponding plane

strain values ( corresponding to the limiting values when a/h ---,oc, ), namely

k t ( 0 ) k b ( 0 )

kteC , , and kbeC

where kt°Cand kb °° are the corresponding values for an edge-cracked strip under

plane strain conditions with the same L0/h ratio ( Figure 4.1 ). These normalizations

show how the constraining effect of the ends affect the crack driving force. For the

same a/h value, when

the value L0/h increases ki (0) (i=t,b) e_may decrease, this is because k i ( i =k. c_
!

t, b ) are relatively more rapidly increasing functions of L0/h. To give some idea

about the absolute values of the stress intensity factors, part of the results are given

for a fixed normalizing stress intensity factor, i.e.,
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where

kt(O) kb(O)

_t_,_h 1 , and _b_ h_l ,

_, N ec oc 6M °e
trt -- h ' orb h 2 '

and h I is the thickness of the first layer of the plate.

In this form it is expected that for a given a/h when L0/h increases ( i.e., the surface

crack gets deeper ) the normalized stress intensity factor ki ( 0 )
¢ioo h_ 1 (i -" i, b ) would

also increase.

In both normalization forms, the stress intensity factor kt( 0 ) and kb( 0 ) are the

values calculated at the maximum penetration point of the crack under the membrane

and bending loads respectively, ttere it should be observed that, as in the through

crack case, when we say the plate is under the bending load we ahvays assume that

the plate is under membrane load of sufficiently high magnitude as well, so that there

is no interference of the crack surfaces on the compressive side of the plate. In the

case of a part-through crack, as can be seen from the results later, under bending the

stress intensity factors change sign as the crack gets deeper. Since a negative stress

intensity factor has no meaning, these solutions, similar to the through crack case,

require a superposition of a tensile solution to make k i > 0, ( i = t,b ).

As noted before, for the application of the line-spring model, the contour of

the part-through crack can be any reasonable curve. Elliptic cracks are mainly studied

here since it is believed that the ellipse is the closest contour for the actual shape of

the crack which may be encountered in practical application. One could refer to [ 21 ]

for results of some different contours and their effects on the convergence of the

results. Here for elliptical contour, the crack depth for any cross section is defined by

( Figure 4.1 )

L(y) = L 0 _[ 1-(y/a) 2

lYl<a,

( 4._'29 )

where L 0 is the crack depth at the midsection ( y = 0 ).
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Tables 4.3 - 4.8 show the stressintensity factors in the two - layer strip

containingan edgecrackundermembraneloadingN and bendingmomentM for the

materialpairs givenin Table4.2. Theseare the actualvaluesfor kt°c and kb_c'

( seethe first normalizationform ) and arecalculatedfrom the resultsof Chapter3.

Basedon theseplanestrain resultsthe coefficientsCbkand Ctkin the shapefunction

gt ( ( ) andgb ( ( ) of the correspondingmaterialpairsaregivenin Tables4.9- 4.14,

To makea better curvefit in alI materialpairsconsideredgb ( _ ) hasthe form of

while

n

k=1
( 4.30 )

n

gt ( ( ) =4 -_- E Ctk ¢2(k-1),
k=l

for h2/b 1 = 1., 0.2, and

( 4.31a )

11

_(k-1)gt ( _ ) --_I-_ E Ctk

k=l
( 4.31 b )

for h2/h 1 = 10., 5.

The extensive numerical surface crack results are given in Figures 4.8 - 4.17

and Tables 4.15 - 4.42, which are very much self-- explanatory. Before giving further

results about two - layer orthotropic plates, the surface crack results for a

homogeneous isotropic plate ( Material Pair I ) are shown first in Figures 4.8 - 4.11,

which correspond to the two normalization forms under bending and tension

respectively. The trends discussed before for these two stress intensity factor

normalization forms can be clearly observed in these figures. Figures 4.12 - 4.16 are

the results for Material Pair B and Figure 4.17 is the comparison of the Material Pair

I ( i.e. the homogeneous isotropic plate ) and Material Pair B ( which consist of fiber

reinforce composites ). As we can see here the material orthotropy does have a
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significanteffect oll tile normalizedstressintensity factor, especiallywhen L0/h1
increases.

Tables4.15 - 4.38 showthe resultsfor all tile material pairsgiven in Table

4.2, whicharegivenagainin both normalizationforms.Basedon all theseresultsthe

surfacecrack behavior could be observed and moreover, combining with proper crack

propagation model the subcritical crack growth and fatigue crack growth problem,

which are very important practical problems, can be studied. Tables 4.39-4.42 give

the results regarding the distribution of the normalized stress intensity factor at the

crack front for Material B under bending and tension respectively. Tables 4.39 and

4.40 are results for a semi-elliptic surface crack and Tables 4.41 and 4.42 are for a

rectangular surface crack. Here the rectangular surface crack contour for any cross

section is defil,ed by ( Figure 4.1 )

L(y) - L 0 15'1< a,

where L 0 is the crack depth at the midsection ( y = 0 ).

(4.30)

Finally it must be noted that, due to the lack of available surface crack results

in the layered orthotropic plate, the comparison with other results is made only with

homogeneous material, which has been shown to give very good results ( figures 4._'2 -

4.5 ). Because of the relative simplicity and high accuracy of the model more

extensive parameter studies for wider range of orthotropic and isotropic material

combinations can be done whenever it is needed.
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Table2.1The MaterialElasticConstants. ( Unit: GPA )

Materials A, B, C and D: Fiber Reinforced Composites

A B C D

E× 39.0 30,6 153.07 40.41

Ey 30.6 39.0 40.41 153.07

Ez 6.4 6.4 22.75 22.75

Gxy 19.7 19.7 29.30 29.30

Gyz 4.5 4.5 1.55 4.08

Gxz 4.5 4.5 4.08 1.55

Vxy 0.447 0.351 1.834 0.484

Vyz 0.275 0.275 0.261 0.195

Vxz 0.275 0.275 0.195 0.261
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Table2.2 The effect of the thickness ratio a/h on the stress intensity factor

in a cracked plate under uniform bending.

( a b = 6 Mo/h 2 )

k I ( h12 ) la b q'W-

a/h Classical Reissner Mindlin Reddy

0.05 1.0000 0.9885 0.9868

0.1 1.0000 0.9677 0.9632 0.9676

0.25 1.0000 0.8992 0.8895 0.8992

0.5 1.0000 0.8193 0.8087 0.8193

1. 1.0000 0.7475 0.7401 0.7477

2. 1.0000 0.6997 0.6982 0.7008
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Table2.3The effectof the thickness ratio a/h and the transverse shear correction

factor K ( see 1.18 ) on the stress intensity factor in a cracked plate under

uniform bending.

(¢r b = 6 Mo/h 2)

k_ ( hi2 ) /%

K 0.0001 5/6 1 10

a/h

0.05 1.000 0.9885 0.9868 0.9338

0.1 1.000 0.9677 0.9632 0.8634

0.25 1.000 0.8992 0.8895 0.7610

0.5 0.9997 0.8193 0.8087 0.7090

1.0 0.9990 0.7475 0.7401 0.6793

100

0.8141

0.7449

0.6898

0.6684
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Table3.1 The MaterialElasticConstants.( Unit: GPA)

Material 1and Material2: FiberReinforcedComposites

Material 1 Material 2

Ex=39.0 Ex=30.6

Ey----30.6 Ey=39.0

Ez=6.4 Ez=6.4

Gxy---19.7 Gxy=19.7

Gyz=4.5 Gyz=4.5

Gxz=4.5 Gxz=4.5

Vxy=0.447 Vxy=0.351

Vxz=0.275 vxz=0.275

Vyz=0.275 Vyz=0.275

Material 3: Steel

E=200., v=0.26

Material 4: Zirconia

E=137.9, v=0.26

Material 5: Alumina

E----325., v----0.3

Table 3.2 The Material Pairs. ( Figure 3.1 )

Material Pair

A

B

C

D

E

I

Materials

Layer I

2

1

5

4

3

3

Layer II

1

2

3

3

4

3
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Table 3.3 Stress Intensity Factor in a strip containing an edge crack under

membrane loading N and bending moment M. ( Material Pair I )

(a t-- N/h, a b'- 6M/h 2)

L kt kb

0.001 1.1215 1.1215

0.1 1.1399 1.0708

0.2 1.1892 1.0472

0.3 1.2652 1.0432

0.4 1.3673 1.0553

0.5 1.4975 1.0826

0.6 1.6599 1.1241

0.7 1.8612 1.1826

0.8 2.1114 1.2606

0.9 2.4253 1.3630
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Table3.4 Powerof singulari.ty,/3,for a crack terminating at the interface. ( I )

( Fig. 3.1, Eq. 3.88 )

isotropic orthotropic

vl= v 2 = 0.3 /_1" = 12.078

0.001 0.963 0.045 0.835

0.01 0.915 0.119 0.755

0.045 0.826 0.375 0.650

0.1 0.246 0.659 0.564

0.98 0.502 0.871 0.520

1.0 0.50 1.0 0.50

1.02 0.498 3.642 0.346

10.0 0.333 5.10 0.313

22.22 0.301 13.66 0.242

44.44 0.30 91.06 0.193

100.0 0.294 273.2 0.186

1000. 0.290 546.6 0.184
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Table3.5 Power of singularity, fl, for a crack terminating at the interface.( II )

( Fig. 3.1, Eq. 3.88 )

orthotropic orthotropic

* 61.6* //i --
Pl = 1.35

#1

_.__;._2 _'

0.41,10 -s 0.998 0.446,10 -s

0.41,10 -4 0.995 0.446,10 -4

0.41,10 -3 0.986 0.446* 10 -3

0.0041 0.954 0.0089

0.041 0.863 0.129

0.4075 0.644 0.196

0.998 0.520 0.999

1.00 0.5 1.00

5.9 0.286 17.86

7.79 0.277 89.27

41.0 0.157 892.7

4.1,103 0.121 8"93"103

4.1,104 0.117 8"93"104

4.1,105 0.117 8"93"105

0.998

0.995

0.984

0.931

0.775

0.725

0.528

0.5

0.279

0.254

0.248

0.2477

0.2477

0.2477
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Table 3.6 The effect of the individual material constants on the power of singularity.

( Material I is isotropic, Material II is assumed to be "isotropic"

with the same material constants as Materials I

except: a. varying Ey, cl= Ey/Ex=Ey/E;

b. varying Gxy , c2:Gxy/Ex=Gxy/E )

cl _2*/_z* /3

1.0 1. 0.5

10. 1.186 0.48

100. 12.88 0.459

c2 p2*//_l* /_

1.0 1. O.5

0.1 0.3667 0.603

0.01 0.1178 0.7385
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Table3.7 The effectof the individualmaterialconstantson the powerof singularity.

( Material I is othotropic,Material 1,and Material II is assumed
to be "othotropic" with the same material constants as Materials I

except: a. varying Ex2, el= Ex2/Exl;

b. varying Gxy 2, c2=Gxy2/Gxyl )

CI p2*/]Xl *

0.5 0.6363 0.564

1.0 1. 0.5

2.0 1.661 0.427

5.O 5.1 0.283

C2 /_2*/]Jl * /_

1.0 1. 0.5

0.1 0.369 0.607

0.01 0.1192 0.744
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Table 4.1 The Material Elastic Constants. ( Unit: GPA)

Material 1 and Material 2: Fiber Reinforced Composites

Material 1 Material 2

Ex=39.0 Ex=30.6

Ey=30.6 Ey=39.0

Ez=6.4 Ez=6.4

Gxy=19.7 Gxy=19.7

Gyz=4.5 Gyz=4.5

Gxz=4.5 Gxz=4.5

Vxy=0.447 Vxy=0.351

Vxz =0.275 Vxz =0.275

Vyz=0.275 Vyz--0.275

Material 3: Steel

E=200., v=0.26

Material 4: Zirconia

E=137.9, v=0.26

Material 5: Alumina

E=325., v=0.3

Table 4.2 The Material Pairs. ( Figure 4.1 )

Material Pair

A

B

C

D

E

I

Materials

Layer I

2

1

5

4

3

3

Layer II

1

2

3

3

4

3

144



Table4.3 StressIntensityFactorin a homogeneousisotropicstrip containinganedge

crackundermembraneloadingN andbendingmomentM. ( Material Pair I )

(tr t- N/h, a b = 6M/h 2)

L kt kb

-oh/2)

0.001 1.1215 1.1215

0.1 1.1399 1.0708

0.2 1.1892 1.0472

0.3 1.2652 1.0432

0.4 1.3673 1.0553

0.5 1.4975 1.0822

0.6 1.6599 1.1241

0.7 1.8612 1.1826

0.8 2.1114 1.2606

0.9 2.4253 1.3630
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Table4.4 StressIntensity Factor in a two-layer strip containing an edge crack under

membrane loading N and bending moment M. ( Material Pair A )

(_t = N/h, a b =6M/h 2, h2/hl=l.)

L kt kb

( h_ ) _ Tff _b

0.001 1.106 1.106

0.1 1.115 1.060

0.2 1.160 1.030

0.3 1.237 1.033

0.4 1.334 1.047

0.5 1.455 1.074

0.6 1.602 1.114

0.7 1.780 1.165

0.8 1.990 1.228

0.9 2.226 1.296
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Table 4.5 Stress Intensity Factor in a two-layer strip containing an edge crack under

membrane loading N and bending moment M. ( Material Pair B )

(a t = N/h, a b = 6M/h 2 )

h2/h 1-- 10. h2/h 1=1. h2/hl =0"1

L kt kb kt kb kt kb

0.001 1.100 1.100 1.100 1.100 1.100 1.100

0.1 1.060 1.003 1.120 1.050 1.192 1.004

0.2 1.000 0.984 1.164 1.016 1.298 1.021

0.3 1.031 0.985 1.248 1.016 1.545 1.077

0.4 1.036 0.988 1.355 1.028 1.904 1.178

0.5 1.054 0.993 1.492 1.055 2.436 1.344

0.6 1.073 1.000 1.664 1.097 3.254 1.609

0.7 1.094 1.007 1.881 1.157 4.591 2.046

0.8 1.117 1.016 2.160 1.243 6.949 2.803

0.9 1.143 1.027 2.538 1.368 11.342 4.126
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Table4.6 StressIntensity Factor in a two-layer strip containing an edge crack under

membrane loading N and bending moment M. ( Material Pair C )

(_r t = N/h, o"b = 6M/h 2)

h2/h 1 -- 1. h2/h 1 -- 5.

L kt kb k t k b

0.001 1.121 1.121 1.121 1.121

0.1 1.140 1.062 1.103 1.078

0.2 1.200 1.039 1.143 1.092

0.3 1.293 1.038 1.169 1.093

0.4 1.417 1.056 1.201 1.098

0.5 1.578 1.090 1.240 1.109

0.6 1.782 1.143 1.287 1.126

0.7 2.046 1.219 1.345 1.150

0.8 2.398 1.330 1.418 1.186

0.9 2.915 1.506 1.521 1.245
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Table4.7 StressIntensityFactorin a two-layerstrip containinganedgecrackunder

membraneloadingN andbendingmomentM. ( MaterialPair D )

(a t = N/h, _b= 6M/h2)

h2/ht=_5, h2/h t= 1. h2/ht =0"2

L kt kb kt kb kt kb

0.001 1.120 1.120 1.120 1.120 1.120 1.120

0.1 1.119 1.074 1.132 1.070 1.161 1.052

0.2 1.114 1.072 1.171 1.044 1.278 1.045

0.3 1.113 1.049 1.234 1.036 1.464 1.081

0.4 1.113 1.027 1.319 1.043 1.734 1.158

0.5 1.114 1.007 1.426 1.062 2.119 1.284

0.6 1.114 0.987 1.556 1.091 2.677 1.480

0.7 1.112 0.967 1.709 1.130 3.522 1.785

0.8 1.109 0.944 1.882 1.174 4.874 2.277

0.9 1.104 0.914 2.058 1.212 7.147 3.093
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Table4.8 Stress Intensity Factor in a two-layer strip containing an edge crack under

membrane loading N and bending moment M. ( Material Pair E )

(at = N/h, ab = 6M/h2)

h2/hl-5, h2/hl:l, h2/hl----0.2

L kt kb kt kb kt kb

hi _ 7 _ °'b "_- _t _1-_

0.001 1.120 1.120 1.120 1.120 1.120 1.120

0.1 1.101 1.078 1.139 1.063 1.167 1.045

0.2 1.138 1.090 1.196 1.040 1.300 1.039

0.3 1.161 1.088 1.284 1.038 1.515 1.079

0.4 1.188 1.087 1.403 1.055 1.827 1.163

0.5 1.222 1.095 1.556 1.088 2.277 1.298

0.6 1.263 r 1.107 1.750 1.139 2.940 1.508

0.7 1.312 1.125 2.000 1.212 3.958 1.834

0.8 1.374 1.152 2.328 1.316 5.618 2.357

0.9 1.459 1.198 2.802 1.480 8.581 3.256
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Table4.9 The coefficients Ctk and Cbk for the shape functions

gt(_) and gb(_)" ( Material Pair I )

k Ctk Cbk

1 1.121 1.121

2 6.520 -1.887

3 -12.39 18.014

4 89.06 -87.38

5 -188.61 241.91

6 207.39 -391.94

7 -32.05 168.01

Table 4.10 The coefficients Ctk and Cbk for the shape functions

gt(_) and gb(_)" ( Material Pair A, h2/hl=l. )

k Ctk Cbk

1 1.103 1.107

2 6.172 -1.278

3 -13.434 6.195

4 90.976 -7.717

5 -196.82 5.208
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Table4.11 The coefficients Ctk and Cbk for the shape functions

gt(_) and gb(_)" ( Material Pair B )

h2/hl=10: h2/hl=l, h2/h1=0.1

k Ctk Cbk Ctk Cb Ct k

1 1.019 1.033 I.I01 1.102 1.107

2 17.083 -2.537 6.637 -1.499 5.837

3 24.226 19.186 -9.789 8.323 -4.321

4 64.081 -17.56 50.836

5 -22.357 20.85 -116.98

6 180.96

7 -87.04

Cbk

1.102

-2.159

16.133

-53.66

108.80

-112.50

52.913

Table 4.12 The coefficients Ctk and Cbk for the shape functions

gt(_) and gb(_). ( Material Pair C ).

h2/hl=5, h2/ha-1.

k Ctk Cbk Ctk Cb k

1 1.09 1.110 1.121 1.121

2 0.528 -0.901 7.786 -1.672

3 15.81 8.284 -12.31 10.71

4 -5.67 23.269 78.050 -26.47

5 43.543 33.67
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Table4.13 The coefficientsCtk andCbkfor the shape functions

gt(_) and gb(_)" ( Material Pair D )

h2/hl=5, h2/hl=l, h2/hl=0.2

k Ctk Cbk Ctk Cbk Ctk Cbk

1 1.120 1.116 1.12 1.120 1.12 1.12

2 -0.333 -1.732 5.25 -I.189 5.83 -1.36

3 4.849 9.058 -8.925 4.565 -9.20 7.81

4 -22.62 -42.95 66.168 -2.533 76.80 -20.42

5 -183.23 -1.605 -203.60 45.04

6 321.69 -53.50

7 -181.34 31.81

Table 4.14 The coefficients Ctk and Cbk for the shape functions

gt(_) and gb((). ( Material Pair E )

h2/hl-'5, h2/hl=l, h2/hl--0.2

k Ctk Cbk Ctk Cbk Ctk Cbk

1 1.11 1.11 1.12 1.121 1.12 1.12

2 0.487 -1.091 7.37 -1.622 6.64 -1.61

3 7.227 8.513 -10.52 10.10 -9.47 10.63

4 32.19 13.05 66.22 -24.12 80.09 -34.84

5 41.11 30.25 -185.27 83.77

6 256.77 -103.51

7 -108.72 56.83
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Table4.15 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 15a the normalization factor

koC_ is calculated from the corresponding crack depth L=L 0. The results in 15b

are normalized with respect to k0t = at_ 1 at= N/h.

( Material Pair A, h2/hl=l. )

Table 4.15 a

kt (Lo)/koC_t

L0/h t 0.3 0.6 0.9

a/h

6. 0.955 0.821 0.637

4. 0.936 0.768 0.563

2. 0.892 0.663 0.442

1. 0.829 0.546 0.333

0.5 0.736 0.419 0.255

0.25 0.607 0.299 0.179

Table 4.15 b

kt(Lo)/kot

L0/h i 0.3 0.6 0.9

a/h

6. 0.647 1.019 1.345

4. 0.643 0.995 1.189

2. 0.604 0.823 0.929

1. 0.562 0.678 0.703

0.5 0.499 0.550 0.538

0.25 0.411 0.371 0.378
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Table4.16 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to bending. In 16a the normalization factor

koC_ is calculated from the corresponding crack depth L=L 0. The results in 16b

are normalized with respect to k0b = _'b h_l, ab=6M/h2"

( Material Pair A, h2/hl=l. )

Table 4.16 a

kb(Lo)/k_

Lo/hl 0.3 0.6 0.9

a/h
6. 0.954 0.806 0.591

4. 0.934 0.747 0.506

2. 0.888 0.631 0.365

1. 0.821 0.500 0.238

0.5 0.723 0.358 0.130

0.25 0.586 0.223 0.050

Table 4.16 b

kb(L0)/k0b

Lo/hl 0.3 0.6 0.9

a/h
6. 0.540 0.695 0.727

4. 0.512 0.645 0.622

2. 0.486 0.544 0.449

1. 0.450 0.431 0.293

0.5 0.396 0.309 0.160

0.25 0.321 0.192 0.061
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Table 4.17 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 17 the normalization factor

ko_ is calculated from the corresponding crack depth L=L 0. The results in 17b

are normalized with respect to k0t = at_ 1 at= N/h.

( Material Pair B, h2/hl=l. )

Table 4.17 a

kt(L0)/k_

Lo/h I 0.3 0.6 0.9

a/h

6. 0.961 0.840 0.648

4. 0.944 0.790 0.575

2. 0.904 0.688 0.451

1. 0.843 0.568 0.337

0.5 0.751 0.437 0.241

0.25 0.586 0.312 0.169

Table 4.17 b

kt(Lo)/kot

Lo/h I 0.3 0.6 0.9

a/h

6. 0.657 1.083 1.560

4. 0.645 1.018 1.384

2. 0.618 0.887 1.086

I. 0.576 0.732 0.811

0.5 0.513 0.563 0.580

0.25 0.400 0.402 0.407
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Table 4.18 Normalized stress intensity factor at the center of a semi-ellipticM surface

crack in a two-layer plate subjected to bending. In 18a the normalization factor

ko_ is calculated from the corresponding crack depth L=L 0. The results in 18b

are normalized with respect to k0b = _b h_l, ab=6M/h 2.

( Material Pair B, h2/hl=l. )

Table 4.18 a

kb(Lo)/k_

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.960 0.824 0.601

4. 0.942 0.768 0.515

2. 0.899 0.653 0.369

l. 0.835 0.518 0.234

0.5 0.738 0.368 0.121

0.25 0.601 0.225 0.038

Table 4.18 b

kb(Lo)/kob

L0/h 1 0.3 0.6 0.9

a/h

6. 0.543 0.711 0.780

4. 0.533 0.663 0.668

2. 0.509 0.563 0.479

I. 0.472 0.447 0.304

0.5 0.418 0.318 0.157

0.25 0.340 0.194 0.049
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Table4.19 Normalizedstress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 19a the normalization factor

koC_ is calculated from the corresponding crack depth L=L O. The results in 19b

are normalized with respect to k0t = at_ 1 at= N/h.

( Material Pair B, h2/hl=10. )

Table 4.19 a

kt(L0)/k_

L0/h 1 0.3 0.6 0.9

a/h

6. 0.996 0.988 0.968

4. 0.995 0.984 0.956

2. 0.993 0.973 0.928

1. 0.990 0.957 0.885

0.5 0.984 0.927 0.813

0.25 0.971 0.872 0.691

Table 4.19 b

kt(L0)/k0t

L0/h 1 0.3 0.6 0.9

a/h

6. 0.562 0.821 1.049

4. 0.562 0.817 1.037

2. 0.560 0.778 1.006

1. 0.559 0.775 0.960

0.5 0.555 0.770 0.882

0.25 0.548 0.724 0.749
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Table4.20 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to bending. In 20a the normalization factor

ko°_ is calculated from the corresponding crack depth L---L 0. The results in 20b

are normalized with respect to k0b -- ab h_-l, ab-6M/h 2.

( Material Pair B, h2/hl--10. )

Table 4.20 a

kb(Lo)/koC_

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.996 0.992 0.981

4. 0.996 0.989 0.974

2. 0.994 0.981 0.955

1. 0.991 0.969 0.924

0.5 0.986 0.946 0.872

0.25 0.975 0.905 0.794

Table 4.20 b

kb(Lo)/kob

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.537 0.768 0.956

4. 0.537 0.766 0.949

2. 0.536 0.759 0.930

1. 0.535 0.756 0.900

0.5 0.532 0.756 0.850

0.25 0.526 0.701 0.774
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Table4.21 Normalizedstressintensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 21a the normalization factor

ko_ is calculated from the corresponding crack depth L=L 0. The results in 21b

are normalized with respect to k0t = at_-_l _t = N/h.

( Material Pair B, h2/hl=0.1 )

Table 4.21 a

kt(L0)/koC_t

Lo/h I 0.3 0.6 0.9

a/h

6. 0.862 0.503 0.137

4. 0.817 0.430 0.112

2. 0.722 0.320 0.078

1. 0.609 0.231 0.054

0.5 0.477 0.163 0.037

Table 4.21 b

kt(L0)/k0t

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.729 1.268 1.474

4. 0.691 1.084 1.205

2. 0.611 0.807 0.839

1. 0.508 0.557 0.581

0.5 0.385 0.386 0.398
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Table4.22 Normalizedstressintensityfactor at the centerof a semi-ellipticalsurface
crackin a two-layer plate subjected to bending. In 22a the normalization factor

koC_ is calculated from the corresponding crack depth L=L 0. The results in 22b

are normalized with respect to k0b = O'b h_l , _b--6M/h 2.

( Material Pair B, h2/hl=0.1 )

Table 4.22 a

kb(Lo)/koC_

L0/h 1 0.3 0.6 0.9

a/b

6. 0.852 0.432 0.034

4. 0.802 0.345 0.007

2. 0.699 0.215 -0.024

1. 0.573 0.111 -0.041

0.5 0.428 0.033 -0.043

Table 4.22 b

kb(L0)/k0b

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.503 0.538 0.133

4. 0.473 0.430 0.027

2. 0.412 0.268 -0.094

1. 0.338 0.138 -0.160

0.5 0.252 0.041 -0.168
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Table4.23 Normalizedstressintensityfactorat the centerof a semi-ellipticalsurface
crack in a two-layerplatesubjectedto tension. In 23 the normalization factor

koC_tis calculated from the corresponding crack depth L=L 0. The results in 23b

are normalized with respect to k0t -- at_ 1 at---- N/h.

( Material Pair C, h2/hl=l. )

Table 4.23 a

kt (Lo)/koC_t

L0/h 1 0.3 0.6 0.9

a/h

6. 0.972 0.897 0.747

4. 0.960 0.857 0.674

2. 0.931 0.767 0.538

1. 0.887 0.653 0.404

0.5 0.818 0.520 0.281

Table 4.23 b

kt(Lo)/kot

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.688 1.238 2.065

4. 0.680 1.183 1.863

2. 0.459 1.058 1.487

1. 0.433 0.901 1.117

0.5 0.393 0.717 0.777

162



Table4.24 Normalizedstressintensityfactor at the centerof a semi-ellipticalsurface

crackin a two-layerplatesubjectedto bending.In 24athe normalizationfactor
C_

kob is calculated from the corresponding crack depth L----L 0. The results in 24b

are normalized with respect to kob-- ab h_l, _b-6M/h 2.

( Material Pair C, h2/hl-l. )

Table 4.24 a

kb(Lo)/k_

L0/h 1 0.3 0.6 0.9

a/h

6. 0.974 0.900 0.739

4. 0.964 0.861 0.663

2. 0.938 0.775 0.523

1. 0.899 0.669 0.390

0.5 0.843 0.549 0.273

Table 4.24 b

kb(Lo)/kob

L0/h 1 0.3 0.6 0.9

a/h

6. 0.554 0.796 1.056

4. 0.548 0.762 0.974

2. 0.533 0.686 0.747

1. 0.511 0.592 0.557

0.5 0.479 0.486 0.390
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Table4.25 Normalizedstress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 25a the normalization factor

koch, is calculated from the corresponding crack depth L=L 0. The results in 25b

are normalized with respect to k0t -----at_ 1 at= N/h.

( Material Pair C, h2/hl=5. )

Table 4.25 a

kt(L0)/koC_,

L0/h I 0.3 0.6 0.9

a/h

6. 1.003 0.995 0.979

4. 1.001 0.991 0.968

2. 0.998 0.979 0.940

1. 0.994 0.961 0.900

0.5 0.986 0.932 0.840

0.25 0.972 0.883 0.750

Table 4.25 b

kt(L0)/k0t

6.

4.

L0/h I 0.3 0.6 0.9

.

!.

0.5

0.25

0.642 0.992 1.412

0.641 0.988 1.397

0.639 0.976 1.356

0.636 0.958 1.299

0.631 0.929 1.212

0.622 0.880 1.082
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Table4.26 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to bending. In 26a the normalization factor

koC_ is calculated from the corresponding crack depth L=L 0. The results in 26b

are normalized with respect to k0b = trb h_--1 , _b=6M/h2.

( Material Pair C, h2/hl=5. )

Table 4.26 a

kb(L0)/ko°_

Lo/hl 0.3 0.6 0.9

a/h

6. 1.003 0.996 0.979

4. 1.002 0.991 0.967

2. 0.999 0.978 0.938

1. 0.994 0.960 0.896

0.5 0.986 0.930 0.834

0.25 0.972 0.879 0.740

Table 4.26 b

kb(L0)/k0b

Lo/hl 0.3 0.6 0.9

a/h

6. 0.600 0.869 1.156

4. 0.600 0.864 1.142

2. 0.598 0.853 1.108

1. 0.595 0.837 1.058

0.5 0.590 0.811 0.985

0.25 0.582 0.767 0.874
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Table4.27 Normalizedstress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 27a the normalization factor

koC_ is calculated from the corresponding crack depth L=L 0. The results in 27b

are normalized with respect to k0t = at_ 1 at-- N/h.

( Material Pair D, h2/hl=l. )

Table 4.27 a

kt(Lo)/koC_

L0/h 1 0.3 0.6 0.9

a/h

6. 0.959 0.856 0.707

4. 0.942 0.804 0.627

2. 0.899 0.693 0.483

1. 0.836 0.563 0.348

0.5 0.747 0.424 0.262

Table 4.27 b

kt(L0)/kot

L0/h 1 0.3 0.6 0.9

a/h

6. 0.648 1.032 1.380

4. 0.637 0.969 1.224

2. 0.608 0.835 0.943

1. 0.565 0.675 0.679

0.5 0.505 0.511 0.512
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Table4.28 Normalizedstressintensityfactor at the centerof a semi-ellipticalsurface

crackin atwo-layerplatesubjectedto bending.In 28athe normalizationfactor

koC_is calculatedfrom the correspondingcrackdepthL--L0. Theresultsin 28b

arenormalizedwith respectto k0b----ab_h 1 , _b--6M/h 2.

( Material Pair D, h2/hl--1. )

Table 4.28 a

kb(Lo)]k_

L0/h 1 0.3 0.6 0.9

a/h

6. 0.962 0.863 0.706

4. 0.946 0.813 0.624

2. 0.909 0.709 0.481

1. 0.855 0.591 0.353

0.5 0.782 0.468 0.246

Table 4.28 b

kb(L0)/k0b

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.552 0.729 0.812

4. 0.537 0.687 0.717

2. 0.516 0.599 0.553

1. 0.485 0.499 0.406

0.5 0.444 0.395 0.283
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Table4.29 Normalizedstress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 29a the normalization factor

koch, is calculated from the corresponding crack depth L=L 0. The results in 29b

are normalized with respect to k0t -" at_ 1 at= N/h.

( Material Pair D, h2/hl=5. )

Table 4.29 a

kt(L0)/koC_,

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.993 0.981 0.965

4. 0.991 0.974 0.950

2. 0.986 0.954 0.913

1. 0.977 0.926 0.862

0.5 0.944 0.883 0.791

0.25 0.940 0.815 0.689

Table 4.29 b

kt(L0)/k0t

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.605 0.847 1.001

4. 0.604 0.840 0.995

2. 0.601 0.802 0.956

1. 0.596 0.799 0.903

0.5 0.575 0.718 0.828

0.25 0.573 0.703 0.722
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Table4.30 Normalizedstress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to bending. In 30a the normalization factor

koC_ is calculated from the corresponding crack depth L=L o. The results in 30b

are normalized with respect to kob -- _b h_l, erb=6M/h2-

( Material Pair D, h2/hl---5. )

Table 4.30 a

kb(Lo)/koC_

L0/hl 0.3 0.6 0.9

a/h
6. 0.993 0.981 0.964

4. 0.991 0.973 0.949

2. 0.985 0.954 0.911

1. 0.977 0.925 0.858

0.5 0.964 0.882 0.784

0.25 0.939 0.813 0.677

Table 4.30 b

kb(L0)/k0b

Lo/hl 0.3 0.6 0.9

a/h
6. 0.571 0.750 0.836

4. 0.569 0.744 0.823

2. 0.566 0.729 0.816

1. 0.561 0.707 0.744

0.5 0.554 0.674 0.680

0.25 0.539 0.622 0.587
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Table4.31 Normalizedstress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 31a the normalization factor

ko_ is calculated from the corresponding crack depth L=L 0. The results in 31b

are normalized with respect to k0t = _t_-ll _rt= N/h.

( Material Pair D, h2/hl=0.2 )

Table 4.31 a

kt(L0)/koC_

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.918 0.662 0.278

4. 0.886 0.587 0.226

2. 0.811 0.459 0.160

1. 0.718 0.348 0.114

0.5 0.606 0.256 0.081

0.25 0.470 0.183 0.057

Table 4.31 b

kt(Lo)/kot

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.736 1.373 1.885

4. 0.710 1.217 1.532

2. 0.650 0.952 1.108

1. 0.576 0.722 0.773

0.5 0.486 0.531 0.549

0.25 0.377 0.379 0.386
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Table 4.32 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to bending. In 32a the normalization factor

ko°_ is calculated from the corresponding crack depth L=L 0. The results in 32b

are normalized with respect to k0b = ab h_l, _rb=6M/h2.

( Material Pair D, h2/hl=0.2 )

Table 4.32 a

kb(L0)/koC_

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.913 0.621 0.195

4. 0.878 0.543 0.136

2. 0.796 0.384 0.061

1. 0.694 0.254 0.013

0.5 0.572 0.147 -0.018

0.25 0.430 0.064 -0.033

Table 4.32 b

kb(Lo)/kob

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.541 0.712 0.572

4. 0.520 0.622 0.399

2. 0.471 0.440 0.179

1. 0.411 0.291 0.038

0.5 0.339 0.169 -0.053

0.25 0.255 0.073 -0.097
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Table4.33 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 33a the normalization factor

ko°_ is calculated from the corresponding crack depth L=L 0. The results in 33b

are normalized with respect to k0t = at_ _rt= N/h.

( Material Pair E, h2/hl=1. )

Table 4.33 a

kt(Lo)/koC_t

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.971 0.890 0.734

4. 0.958 0.850 0.660

2. 0.927 0.754 0.523

1. 0.880 0.638 0.390

0.5 0.809 0.504 0.270

Table 4.33 b

kt(Lo)/kot

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.683 1.206 1.951

4. 0.674 1.152 1.754

2. 0.652 1.022 1.390

1. 0.619 0.865 1.037

0.5 0.569 0.683 0.718
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Table 4.34 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to bending. In 34a the normalization factor

ko_ is calculated from the corresponding crack depth L=L 0. The results in 34b

are normalized with respect to k0b = ab h_"1 , ab=6M/h 2.

( Material Pair E, h2/hl=l. )

Table 4.34 a

kb(L0)/koC_

Lo/h I 0.3 0.6 0.9

a/h

6. 0.973 0.893 0.725

4. 0.961 0.852 0.647

2. 0.933 0.762 0.506

1. 0.893 0.654 0.374

0.5 0.834 0.533 0.260

Table 4.34 b

kb(Lo)/kob

Lo/hx 0.3 0.6 0.9

a/h

6. 0.553 0.788 1.018

4. 0.546 0.752 0.908

2. 0.530 0.672 0.710

1. 0.508 0.577 0.525

0.5 0.474 0.470 0.365

173



Table 4.35 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 35a the normalization factor

k0C_ is calculated from the corresponding crack depth L----L 0. The results in 35b

are normalized with respect to k0t = ate1 at-- N/h.

( Material Pair E, h2/hl=5. )

Table 4.35 a

kt (Lo)/koC_t

Lo/h 1 0.3 0.6 0.9

a/h

6. 1.003 0.995 0.979

4. 1.001 0.990 0.967

2. 0.998 0.977 0.938

1. 0.993 0.958 0.896

0.5 0.985 0.927 0.836

0.25 0.969 0.876 0.744

Table 4.35 b

kt(Lo)/kot

Lo/h I 0.3 0.6 0.9

a/h

6. 0.638 0.973 1.355

4. 0.637 0.969 1.338

2. 0.635 0.956 1.298

1. 0.631 0.937 1.240

0.5 0.626 0.907 1.157

0.25 0.616 0.857 1.029
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Table 4.36 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to bending. In 36a the normalization factor

koC_ is calculated from the corresponding crack depth L=L 0. The results in 36b

are normalized with respect to k0b ---- ab h_l, _b--6M/h 2.

( Material Pair E, h2/hl-'5. )

Table 4.36 a

kb(Lo)/koC_

L0/h I 0.3 0.6 0.9

a/h

6. 1.002 0.996 0.979

4. 1.001 0.990 0.966

2. 0.998 0.977 0.936

1. 0.993 0.957 0.892

0.5 0.984 0.925 0.828

0.25 0.969 0.872 0.732

Table 4.36 b

kb(Lo)/kob

Lo/h z 0.3 0.6 0.9

a/h

6. 0.597 0.854 1.113

4. 0.597 0.849 1.098

2. 0.595 0.838 1.064

1. 0.592 0.821 1.014

0.5 0.586 0.793 0.932

0.25 0.577 0.748 0.832
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Table 4.37 Normalized stress intensity factor at the center of a semi-elliptical surface

crack in a two-layer plate subjected to tension. In 37a the normalization factor

ko°_ is calculated from the corresponding crack depth L=L 0. The results in 37b

are normalized with respect to k0t = at_ 1 at= N/h.

( Material Pair E, h2/h1=0.2 )

Table 4.37 a

kt(Lo)/ko_t

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.934 0.693 0.280

4. 0.907 0.619 0.228

2. 0.841 0.489 0.159

1. 0.756 0.372 0.111

0.5 0.651 0.270 0.076

0.25 0.523 0.178 0.052

Table 4.37 b

kt(Lo)/kot

a/h

6.

4.

Lo/h 1 0.3 0.6 0.9

.

1.

0.5

0.25

0.775 1.578 2.280

0.753 1.410 1.856

0.698 1.114 1.294

0.627 0.847 0.904

0.540 0.615 0.619

0.274 0.405 0.423
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Table4.38 Normalizedstressintensityfactorat the center of a semi-ellipticM surface

crack in a two-layer plate subjected to bending. In 38a the normalization factor

koC_ is calculated from the corresponding crack depth L=L 0. The results in 38b

are normalized with respect to kob -- _rb h_--1, Crb--6M/h2.

( Material Pair E, h2/hl=0.2 )

Table 4.38 a

kb(Lo)/k_C_

L0/h 1 0.3 0.6 0.9

a/h

6. 0.930 0.652 0.184

4. 0.901 0.566 0.123

2. 0.828 0.413 0.045

1. 0.734 0.274 -0.005

0.5 0.618 0.157 -0.035

0.25 0.476 0.065 -0.049

Table 4.38b

kb(Lo)/k0b

Lo/h 1 0.3 0.6 0.9

a/h

6. 0.550 0.762 0.568

4. 0.532 0.661 0.380

2. 0.489 0.482 0.139

1. 0.434 0.320 -0.015

0.5 0.365 0.183 -0.108

0.25 0.281 0.076 -0.151
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Table4.39a andb Normalizedstressintensityfactor at the crackfront for a

semi-elliptical(a), or rectangular(b) surfacecrackin a two-layerplate

subjectedto tension. ( MaterialPair B, h2/hl=l. )

Semi-ellipticalsurfacecrack

a.1 _h=a. kb(y)/k_

L0/h 1 0.3 0.6 0.9

y/a

0. 0.843 0.568 0.337

0.1 0.838 0.566 0.336

0.2 0.827 0.559 0.333

0.3 0.814 0.553 0.328

0.4 0.803 0.547 0.324

0.5 0.793 0.542 0.320

0.6 0.774 0.532 0.314

0.7 0.732 0.512 0.304

0.8 0.667 0.483 0.292

0.9 0.616 0.463 0.284

a.2)  h=2.

L0/h 1 0.3 0.6 0.9

y/a

0. 0.904 0.688 0.451

0.1 0.899 0.684 0.449

0.2 0.885 0.675 0.443

0.3 0.869 0.664 0.436

0.4 0.854 0.653 0.429

0.5 0.839 0.643 0.421

0.6 0.814 0.625 0.411

0.7 0.762 0.591 0.392

0.8 0.683 0.540 0.365

0.9 0.616 0.498 0.345

178.a



Table4.39b continued
Rectangularsurfacecrack

b.1 a/h=l. kb(Y)/ko°_

y/a

0.

0.1

0.2

Lo/hl

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.891

0.886

0.875

0.866

0.863

0.862

0.850

0.814

0.752

0.662

0.6

0.627

0.622

0.610

0.598

0.589

0.581

0.561

0.518

0.453

0.380

0.9

0.376

0.373

0.364

0.355

0.348

0.342

0.329

0.301

0.261

0.222

b.2) a/h=2.

y/a

0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo/hl 0.3

0.944

0.937

0.921

0.910

0.913

0.923

0.923

0.891

0.837

0.786

0.6

0.752

0.747

0.735

0.724

0.717

0.712

0.695

0.653

0.586

0.502

178.b

0.9

0.508

0.504

0.494

0.483

0.475

0.468

0.452

0.416

0.363

0.306



Table4.40a andb Normalizedstressintensityfactor at the crackfront for a

semi-elliptical(a), or a rectangular(b) surfacecrackin a two-layerplate

subjectedto bending. ( MaterialPair B, h2/hl=l. )

a.1 a_/h:l.

Semi-ellipticalsurfacecrack

kb(Y)/k_

L0/h I 0.3 0.6 0.9
y/a

0. 0.835 0.518 0.234

0.1 0.831 0.516 0.235

0.2 0.821 0.515 0.237

0.3 0.812 0.514 0.243

0.4 0.809 0.521 0.253

0.5 0.808 0.53½ 0.267

0.6 0.801 0.542 0.283

0.7 0.771 0.544 0.299

0.8 0.717 0.545 0.318

0.9 0.685 0.557 0.351

a.2)  h=2,

L0/h 1 0.3 0.6 0.9

y/a

0. 0.899 0.653 0.369

0.1 0.894 0.650 0.368

0.2 0.883 0.645 0.368

0.3 0.871 0.642 0.371

0.4 0.863 0.644 0.380

0.5 0.859 0.650 0.394

0.6 0.845 0.652 0.408

0.7 0.806 0.643 0.415

0.8 0.738 0.616 0.420

0.9 0.689 0.611 0.442

178.c



Table4.40b continued

Rectangularsurfacecrack

b.1) a_Jh=l. kb(Y)/koC_

Lo/h1 0.3 0.6 0.9

y/a

0. 0.876 0.563 0.258

0.1 0.874 0.563 0.257

0.2 0.870 0.562 0.257

0.3 0.863 0.556 0.254

0.4 0.857 0.540 0.241

0.5 0.848 0.515 0.222

0.6 0.831 0.485 0.199

0.7 0.799 0.450 0.179

0.8 0.745 0.398 0.151

0.9 0.635 0.289 0.086

b.2) a/h=2.

Lo/h 1 0.3 0.6 0.9

0. 0.933 0.705 0.409

0.1 0.928 0.704 0.410

0.2 0.918 0.704 0.408

0.3 0.911 0.699 0.405

0.4 0.910 0.686 0.391

0.5 0.914 0.664 0.367

0.6 0.909 0.637 0.339

0.7 0.883 0.604 0.312

0.8 0.837 0.550 0.273

0.9 0.767 0.428 0.181

178.d



Table4.41 a and b Normalized stress intensity factor at the crack front for a

semi-elliptical (a), or rectangular (b) surface crack in a two-layer plate

subjected to tension. ( Material Pair C, h2/hl=l. )

Semi-elliptical surface crack

a.1 a._/h= 1. kb(y)/koC_

L0/h I 0.3 0.6 0.9

y/a

0. 0.887 0.653 0.404

0.1 0.885 0.652 0.403

0.2 0.881 0.650 0.401

0.3 0.871 0.643 0.396

0.4 0.852 0.632 0.388

0.5 0.826 0.614 0.377

0.6 0.792 0.593 0.365

0.7 0.754 0.571 0.353

0.8 0.704 0.542 0.341

0.9 0.603 0.481 0.315

a.2)  h=2.

L0/h 1 0.3 0.6 0.9

y/a

0. 0.932 0.767 0.538

0.1 0.930 0.765 0.537

0.2 0.924 0.760 0.532

0.3 0.911 0.748 0.522

0.4 0.889 0.729 0.507

0.5 0.857 0.701 0.486

0.6 0.818 0.667 0.463

0.7 0.773 0.629 0.438

0.8 0.714 0.580 0.408

0.9 0.600 0.492 0.354

179.a



Table4.41b continued
Rectangularsurfacecrack

a.1 kb(Y)/k_C_

y/a

0.

0.1

Lo/hl

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.930

0.927

0.921

0.915

0.913

0.912

O.9O4

0.880

0.839

0.757

0.6

0.722

0.721

0.717

0.709

0.697

0.680

0.656

0.618

0.558

0.445

0.9

0.459

0.457

0.453

0.446

0.434

0.418

0.396

0.395

0.319

0.245

a.2)

y/a

0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo/ha 0.3

0.977

0.968

0.949

0.936

0.942

0.959

0.964

0.933

0.885

0.865

0.6

0.833

0.832

0.827

0.820

0.812

0.800

0.781

0.750

0.696

0.591

0.9

0.615

0.613

0.608

0.599

0.587

0.570

0.546

0.511

0.457

0.364
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Table'4.42a andb Normalizedstressintensityfactor at the crackfront for a

semi-elliptical(a), or a rectangular(b) surfacecrackin a two-layerplate

subjectedto bending. ( MaterialPair B, h2/hl=l. )

Semi-ellipticalsurfacecrack

a.l a._h=l, kb(y)/kC_

L0/h1 0.3 0.6 0.9
y/a

0. 0.899 0.669 0.390

0.1 0.899 0.670 0.391

0.2 0.897 0.672 0.395

0.3 0.891 0.672 0.399

0.4 0.879 0.670 0.403

0.5 0.859 0.664 0.407

0.6 0.834 0.657 0.411

0.7 0.806 0.652 0.420

0.8 0.767 0.643 0.431

0.9 0.673 0.597 0.427

a.2)  h=2.

L0/h 1 0.3 0.6 0.9

y/a

0. 0.938 0.775 0.523

0.1 0.937 0.775 0.524

0.2 0.934 0.774 0.526

0.3 0.926 0.770 0.527

0.4 0.911 0.762 0.526

0.5 0.887 0.748 0.522

0.6 0.857 0.731 0.517

0.7 0.823 0.713 0.514

0.8 0.777 0.687 0.510

0.9 0.672 0.615 0.478

179.c



Table4.42b continued

Rectangularsurfacecrack

b.1) a/h----1. kb(y)/koC_

Lo/h1 0.3 0.6 0.9

y/a

0. 0.947 0.730 0.436

0.1 0.939 0.728 0.434

0.2 0.923 0.722 0.430

0.3 0.911 0.714 0.423

0.4 0.915 0.705 0.413

0.5 0.927 0.693 0.398

0.6 0.928 0.672 0.377

0.7 0.897 0.636 0.348

0.8 0.844 0.579 0.305

0.9 0.798 0.480 0.236

b.2) a_/h---2.

Lo/h I 0.3 0.6 0.9

0. 0.990 0.838 0.592

0.1 0.977 0.835 0.591

0.2 0.947 0.826 0.586

0.3 0.928 0.818 0.577

0.4 0.938 0.812 0.565

0.5 0.969 0.806 0.549

0.6 0.982 0.791 0.526

0.7 0.941 0.757 0.491

0.8 0.878 0.703 0.439

0.9 0.890 0.616 0.351

179.d



Table4.43a andb Normalizedstressintensityfactor at the crack front for a

semi-elliptical (a), or rectangular (b) surface crack in a two-layer plate

subjected to tension. ( Material Pair B, h2/hl=0.1 )

Semi-elliptical surface crack

a.1 a_./h----1. kb(y)/koC_

L0/h 1 0.3 0.6 0.9

y/a

0. 0.609 0.231 0.055

0.1 0.606 0.231 0.055

0.2 0.600 0.230 0.055

0.3 0.593 0.228 0.055

0.4 0.587 0.226 0.054

0.5 0.582 0.224 0.054

0.6 0.573 0.219 0.052

0.7 0.553 0.213 0.049

0.8 0.524 0.207 0.049

0.9 0.500 0.196 0.048

a.2)

L0/h 1 0.3 0.6 0.9

y/a

0. 0.722 0.321 0.078

0.1 0.718 0.319 0.078

0.2 0.709 0.317 0.078

0.3 0.697 0.314 0.078

0.4 0.688 0.310 0.078

0.5 0.678 0.307 0.078

0.6 0.661 0.300 0.078

0.7 0.626 0.289 0.077

0.8 0.575 0.275 0.074

0.9 0.529 0.262 0.070

180.a



Table4.43b continued

Rectangularsurfacecrack

b.1 a_/'h=l. kb(Y)/koC_

y/a

O.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo/hl 0.3

0.669

0.664

0.653

0.641

0.632

0.622

0.601

0.558

0.492

0.410

0.6

0.257

0.255

0.250

0.244

0.239

0.235

0.226

0.207

0.181

0.155

0.9

0.065

0.065

0.064

0.063

0.062

0.059

0.057

0.053

0.047

0.038

b.2) a_J_.h---2.

y/a

0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo/hl 0.3

0.783

0.779

0.768

0.758

0.752

0.746

0.731

0.691

0.626

0.538

0.6

0.362

0.359

0.351

0.343

0.337

0.331

0.318

0.292

0.254

0.215

0.9

O.O92

0.091

0.090

0.088

0.086

0.084

0.089

0.074

0.065

0.053

180.b



Table4.44a andb Normalizedstressintensityfactorat the crackfront for a

semi-elliptical(a), or a rectangular(b) surfacecrackin a two-layerplate

subjectedto bending. ( MaterialPair B, h2/hi=0.1 )

Semi-ellipticalsurfacecrack

a.1 _ kb(Y)/koC_

L0/hi 0.3 0.6 0.9

y/a

0. 0.573 0.111 -0.040

0.1 0.572 0.112 -0.040

0.2 0.572 0.116 -0.037

0.3 0.570 0.123 -0.032

0.4 0.573 0.134 -0.024

0.5 0.575 0.148 -0.014

0.6 0.576 0.167 -0.002

0.7 0.576 0.187 0.012

0.8 0.577 0.214 0.028

0.9 0.577 0.245 0.048

a.2)  h=2.

L0/h 1 0.3 0.6 0.9

y/a

0. 0.698 0.215 -0.024

0.1 0.696 0.216 -0.023

0.2 0.693 0.219 -0.019

0.3 0.692 0.225 -0.012

0.4 0.691 0.237 -0.001

0.5 0.690 0.254 0.012

0.6 0.673 0.272 0.028

0.7 0.654 0.290 0.044

0.8 0.640 0.310 0.061

0.9 0.619 0.338 0.084

180.c



Table4.44b continued
Rectangularsurfacecrack

b.1) aw/h=l. kb(y)/k_

Lo/h1 0.3 0.6 0.9

y/a
O. 0.622 0.123 -0.045

0.1 0.622 0.123 -0.045

0.2 0.620 0.122 -0.045

0.3 0.613. 0.120 -0.046

0.4 0.599 0.112 -0.046

0.5 0.576 0.099 -0.046

0.6 0.546 0.084 -0.045

0.7 0.510 0.071 -0.044

0.8 0.454 0.055 -0.044

0.9 0.343 0.016 -0.042

b.2) a_Jh=2.

Lo/h 1 0.3 0.6
0.9

y/a
O. 0.750 0.241 -0.024

0.1 0.749 0.240 -0.024

0.2 0.748 0.239 -0.024

0.3 0.743 0.236 -0.025

0.4 0.731 0.227 -0.027

0.5 0.713 0.201 -0.031

0.6 0.689 0.187 -0.034

0.7 0.657 0.168 -0.037

0.8 0.603 0.142 -0.039

0.9 0.484 0.079 -0.043

180.d



Table4.45a andb Normalizedstressintensityfactorat the crackfront for a

semi-ellipticalsurfacecrackin a two-layerplate

subjectedto tension(a), bending(b).

( MaterialPair B, h2/hl=10 )

a.1) _ kb(Y)/koC_

L0/h1 0.3 0.6 0.9
y/a

0. 0.989 0.967 0.885

0.1 0.988 0.955 0.884

0.2 0.983 0.950 0.880

0.3 0.971 0.939 0.873

0.4 0.951 0.920 0.859

0.5 0.921 0.894 0.839

0.6 0.883 0.858 0.812

0.7 0.837 0.815 0.777

0.8 0.774 0.755 0.727

0.9 0.652 0.640 0.625

a.2)  h=2.

L0/h 1 0.3 0.6 0.9

y/a

0. 0.993 0.973 0.928

0.1 0.991 0.972 0.927

0.2 0.986 0.965 0.921

0.3 0.974 0.953 0.910

0.4 0.953 0.933 0.891

0.5 0.923 0.904 0.865

0.6 0.885 0.866 0.830

0.7 0.838 0.819 0.786

0.8 0.775 0.756 0.726

0.9 0.651 0.636 0.614

181.a



Table4.45b continued

b.1) ah/__b__L--1. kb(y)/ko_

y/a

O.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo/hl 0.3

0.991

0.990

0.985

0.975

0.957

0.929

0.894

0.852

0.794

0.675

0.6

0.969

0.967

0.963

O.954

0.938

0.913

O.882

0.844

0.791

0.681

0.9

0.924

0.923

0.919

0.911

0.898

0.878

0.852

0.819

0.773

0.675

b.2) a_Jh=2.

O.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo/hl 0.3

0.994

0.993

0.988

0.977

0.959

0.931

0.896

0.853

0.794

0.675

0.6

0.981

0.980

0.975

0.965

0.947

0.922

0.888

0.848

0.791

0.678

0.9

0.955

0.953

0.948

0.938

0.922

0.898

0.866

0.828

0.775

0.669
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Table4.46a andb Normalizedstressintensityfactorat the crack front for a

semi-elliptical surface crack in a two-layer plate

subjected to tension (a), bending (b).

( Material Pair C, h2/hl=5 )

a.1) _ k_(y)/koC_

Lo/h 1 0.3 0.6 0.9

y/a

0. 0.994 0.961 0.900

0.1 0.989 0.956 0.899

0.2 0.975 0.941 0.884

0.3 0.958 0.922 0.864

0.4 0.940 0.902 0.842

0.5 0.919 0.880 0.817

0.6 0.886 0.846 0.780

0.7 0.829 0.786 0.720

0.8 0.746 0.698 0.635

0.9 0.646 0.611 0.554

a.2)  h=2.

L0/h I 0.3 0.6 0.9

y/a

0. 0.998 0.979 0.940

0.1 0.993 0.973 0.937

0.2 0.980 0.958 0.920

0.3 0.962 0.937 0.897

0.4 0.944 0.916 0.871

0.5 0.922 0.892 0.842

0.6 0.888 0.855 0.801

0.7 0.830 0.792 0.733

0.8 0.747 0.701 0.640

0.9 0.645 0.609 0.552
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Table4.46b continued

b.1) a_/h=l. kb(Y)/koC_

Lo/hl

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.994

0.989

0.976

0.961

0.945

0.927

0.898

0.844

0.766

0.670

0.6

0.960

0.956

0.942

0.925

0.910

0.895

0.868

0.815

0.734

0.657

0.9

0.896

0.892

0.882

0.865

0.851

0.835

0.809

0.759

0.682

0.616

b.2)  h=2.

O.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo/hl 0.3

0.999

0.994

0.981

0.965

O.949

0.931

0.900

0.846

0.767

0.67O

0.6

0.978

0.973

0.959

0.941

0.925

0.907

0.878

0.822

0.738

0.656

0.9

0.938

0.930

0.921

0.901

0.883

0.863

0.831

0.774

0.689

0.615
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Figure 2.1 Geometry and the loading of the plate with a through crack.
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Figure 2.2 ( a ) Geometry and notations of the three-layer symmetric

laminated plate.

/
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Figure 2.2 ( b ) Geometry and notations of the two-layer laminated plate.
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Z

Figure2.2( c ) Geometryandnotationsof the three-layerunsymmetric

laminatedplate.
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Material II E 2=390. Mat.A Mat.B E 2=3.9 E 2 =0.39

Figure 2.3 Normalized stress intensity factor in a 3-symmetrically-layered

plate containing a through crack of length 2a. ( see Figure 2.2 a )

( Material I is fixed as Material A and Material II is

Material A, Material B, or isotropic materials with

u 2- 0.3 and E 2 = 390., 3.9, 0.39 ( GPA ) respectively)

( ko= a b _-d-', ab = 6 MC_/h 2 , h 1 = h 2 = h/2. )
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3.5

E 2 =0.39

(2) (3) (4) (5)

Material II E 2 =3.9 Mat.B Mat.A E 2 =390.

Figure 2.4 Normalized stress intensity factor in a 3-symmetrically-layered

plate containing a through crack of length 2a. ( see Figure 2.2 a )

( Material I is fLxed as Material A and Material II is

Material A, Material B, or isotropic materials with

v 2_ 0.3 and E 2 = 390., 3.9, 0.39 ( GPA ) respectively)

( ko-- o"b _""_-, o"b = 6 M°°/h 2 , hi = h 2 = h/2. )
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Figure 2.5 Normalized stress intensity factor in a 3-symmetrically-layered

plate containing a through crack of length 2a. ( see Figure 2.2 a )

( both Material I and Material II are isotropic materials

with v 1 = v2= 0.3 and different E2/E 1 ratios )

(k0= crb q-g--, a b = 6 M°°/h 2,tl 1 = h2 = h/2. )
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Figure 2.6 Normalized stress intensity factor in a 3-symmetrically-layered

plate containing a through crack of length 2a. ( see Figure 2.2 a )

( both Material I and Material II are isotropic materials

with t, 1 = v2= 0.3 and different E2/E 1 ratios )

( k O- crb _a-, o"b "- 6 MOC/h 2, h I = h 2 = h/2. )
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Figure 2.7 Normalized stress intensity factor in a 3-symmetrically-layered

plate containing a through crack of length 2a. ( see Figure 2.2 a )

(both Material I and Material II are isotropic materials

with v I = v2= 0.3 and different E2/E 1 ratios )

( k0= a b _-_-, a b - 6 M°°/h 2 , hl/h 2 = 0.1 )
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Figure 2.8 Normalized stress intensity factor in a 3-symmetrically-layered

plate containing a through crack of length 2a. ( see Figure 2.2 a )

(both Material I and Material II are isotropic materials

with r, 1 = v2= 0.3 and different E2/E t ratios )

( k0_- crb "_ a , o"b -- 6 M°°/h2, hl/h 2 = 10 )
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Figure 2.9 Normalized stress intensity factor in a 3-symmetrically-layered

"honeycomb structure" plate containing a through crack of length 2a.

( Material II is isotropic material and being fixed ,

for Material I TT - Gxz _ Gyz
Gxy Gxy )

( ko= a b q--_--, crb = 6 M°O/h 2, h]/h 2 = 5, E2/E ] = 5 )
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Figure 2.10 Normalized stress intensity factor in a 3-symmetrically-layered

"honeycomb structure" plate containing a through crack of length 2a.

( Material II is isotropic material and being fixed ,

for-Material I TT- Gxz Gyz
Gxy Gxy )

( k0- crb ,_'_---, crb -- 6 M°C/h 2 , hl/h 2 = 5, a/h - 1 )
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0 10 20

TT

Figure 2.11 Normalized stress intensity factor in a 3-symmetrically-layered

"honeycomb structure" plate containing a through crack of length 2a.

( Material II is isotropic material and being fixed ,

Gxz Gyz
for Material I TT = _- G_y )

(ko= a b q--K-, _rb = 6 M°°/h 2,hl/h 2 = 5, a/h = 1 )
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Figure 2.12 Normalized stress intensity factor in a 3-symmetrically-layered

"honeycomb structure" plate containing a through crack of length 2a.

( Material II is isotropic material and being fixed ,

G_ Gyz
for Material I TT- -W___ - )

GxyX-_xy

(ko= _rb q'--_-, a b = 6 MC_/h2, E2/E ] = 10, a/h = 1 )
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hl/h2
Figure 2.13 Normalized stress intensity factor in a 3-symmetrically-layered

"honeycomb structure" plate containing a through crack of length 2a.

( Material II is isotropic material and being fixed ,

Gxz Gyz
for Material I TT = -Gxy = Gx--_ )

(k0= _rb q-K-, ab = 6 M°C/h 2,TT = 10, a/h = 1 )
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Figure 2.14 Normalized stress intensity factor in a two -layer isotropic plate

containing a through crack of length 2a under bending. ( see Figure 2.2 b )

(both Material I and Material II are isotropic materials

with v 1 = v2= 0.3 and different E2/E 1 ratios )

( k 2 = k( h-c O ), ko= o"b q-K-, crb = 6 MC_/h 2, h2/h 1 = 0.1 )
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Figure 2.15 Normalized stress intensity factor in a two -layer isotropic plate

containing a through crack of length 2a under bending. ( see Figure 2.2 b )

(both Material I and Material II are isotropic materials

with v 1 = 0.3 and different _,2/_1 ratios )

( k2 = k( h-c o ), ko= tr b _"'a--, o"b = 6 MC_/h 2, h2/h I = 1 )
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Figure 2.16 Normalized stress intensity factor in a two - layer isotropic plate

containing a through crack of length 2a under tension. ( see Figure 2.2 b )

( both Material I and Material II are isotropic materials

with u 1 = 0.3 and different v2/u 1 ratios )

( k 2 = k( h-c o ), ko- #t q'-X-, #t = N°V/h, ha/hi = 1 )
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Figure 2.17 Normalized stress intensity factor in a two - layer orthotropic plate

containing a through crack of length 2a under bending. ( see Figure 2.2 b )

(both Material I and Material II are orthotropic materials

with Material I being Material B and Material II being Material A )

(k 2 = k(h-c o ), ko= o"b q-K", a b = 6 M°O/h 2 )

199



•

.8

c_ 4

.2

I •

0.1

0. i I t l i I I i
O. .5 ?. ?.5 2.

a/h

Figure 2.18 Normalized stress intensity factor in a two - layer orthotropic plate

containing a through crack of length 2a under tension. ( see Figure 2.2 b )

( both Material I and Material II are orthotropic materials

with Material I being Material C and Material II being Material D )

(k 2 = k(h-c o ), ko= a t.,l-E-, trt = N°°/h )
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Figure 2.19 Normalized stress intensity factor in a two - layer orthotropic plate

containing a through crack of length 2a under bending. ( see Figure 2.2 b )

( both Material I and Material II are orthotropic materials

with Material I being Material C and Material II being Material D )

( k 2 = k( h-c o ), ko= a b T-K-, a b : 6 M°°/h 2 )
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Figure 2.20 The effect of individual material constants on the normalized

stress intensity factor in a two - layer plate containing a

through crack of length 2a under bending moment M °°. (see Figure 2.2 b )

( Material I is isotropie materials and it is fLxed; Material II

is assumed to be "isotropic" expect one constant varies )

(k 2 = k(h-c o ), ko= _rb q--E-, _b = 6 Moo/h 2 )

(a/h = 1, hl/h 2 = 1 )
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Figure 2.21 The effect of individual material constants on the normalized

stress intensity factor in a two - layer plate containing a

through crack of length 2a under bending moment M °°. ( see Figure 2.2 b )

(Material I is Material D, an orthotropic material, Material II is

assumed to be "isotropic', with E = 40.41 (GPA), expect

one constant varies)

( k 2 = k( h-c o ), ko= a b xf---£-, o"b = 6 MC_/h 2 )

(a/h = 1, h2/h 1 = 1 )
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Figure 2.22 The effect of individual material constants on the normalized

stress intensity factor in a two - layer plate containing a

through crack of length 2a under bending moment M °°. ( see Figure 2.2 b )

(Material I is Material A, an orthotropic material, Material II is

assumed to be "isotropic', with E = 39.0 (GPA), expect

one constant varies)

( k2 --- k( h-c o ), ko= _rb 4-'£-', o"b = 6 M°°/h 2 )

(a/h = 1, h2/h 1 = 1 )
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Figure 2.23 Normalized stress intensity factor distribution in a two - layer orthotropic

plate containing a through crack of length 2a under tension. ( see Figure 2.2 b )

( both Material I and Material II are orthotropic materials

with Material I being Material A and Material II being Material B )

( _ = z + co , ko= O"t _W_--, (7t -- NC_/h )

(a/h = 1, h2/h I = I)
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Figure 2.24 Normalized stress intensity factor distribution in a two - layer orthotropic

plate containing a through crack of length 2a under bending. ( see Figure 2.2 b )

(both Material I and Material II are orthotropic materials

with Material I being Material A and Material II being Material B )

( _ --- z 4- c o , k0 - trb "_"-a-, o"b _- 6 M°°/h 2 )

(a/h = 1, h2/hI = 1 )
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Figure 2.25 Normalized

plate containing

( both Material I and Material II are orthotropic materials

with Material I being Material A and Material II being Material

(_= z + co ,ko= trt q--K-, a t = N°°/h )

(a/h = 1, h2/h 1 = 10 )

stress intensity factor distribution in a two - layer orthotropic

a through crack of length 2a under tension. ( see Figure 2.2 b )

B)
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Figure 2.26 Normalized stress intensity factor distribution in a two- layer orthotropic

plate containing a through crack of length 2a under bending. ( see Figure 2.2 b )

( both Material I and Material II are orthotropic materials

with Material I being Material A and Material II being Material B )

(_ = z + co , ko= o"b q'-g-, a b = 6 MC_/h 2 )

(a/h = 1, h_/h] = 10)
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Figure 2.27 Normalized stress intensity factor distribution in a 3-unsymmetrically

-layered plate containing a through crack under tension. (see Figure 2.2 c )

( Materials I and III are isotropic, with ul= u 3 = 0.3,

and El// E 2 = 3.0, E3// E 2 = 10. ;

Material II is "as if" isotropic, with E 2 and v2= 0.3,

and Gxz = Gyz -" 3 Gxy )

( _ -- z + c O , k0= a t "_-, a t = N°°/h )

(a/h = 0.5, h3/h 2 = 0.2, hl/h 2 = 0.2)
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Figure 2.28 Normalized stress intensity factor distribution in a 3-unsymmetrically

-layered plate containing a through crack under bending. ( see Figure 2.2 c )

( Materials I and III are isotropic, with u]= u3 = 0.3,

and El/ E 2 = 3.0, E3/ E 2 = 10. ;

Material II is "as if" isotropic, with E 2 and v2= 0.3,

and Gxz = Gyz = 3 Gxy )

( _ = z + co , k0= o"b "C'a-, o b = 6 M°O/h 2 )

(a/h = 0.5, h3/h 2 = 0.2, hl/h 2 = 0.2 )
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Figure 2.29 Normalized stress intensity factor distribution in a 3-unsymmetrically

-layered plate containing a through crack under tension. ( see Figure 2.2 c )

( Materials I and III are isotropic, with vl= 0.5 and v 3 = 0.2,

and El/ E 2 - 3.0, E3/ E 2 = I0. ;

Material II is "as if' isotropic, with E 2 and v2= 0.,

and Gxz = Gyz = 3 Gxy )

( Z "- Z "_- CO , k0= o"t _"a-, o"t _- N°°/h )

(a/h = 0.5, h3/h 2 = 0.2, hl/h 2 = 0.2 )
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Figure 2.30 Normalized stress intensity factor distribution in a 3-unsymmetrically

-layered plate containing a through crack under bending. ( see Figure 2.2 c )

( Materials I and III are isotropic, with Vl= 0.5 and v 3 = 0.2,

and El/ E 2 = 3.0, Ea/ E 2 = 10. ;

Material II is "as if" isotropic, with E 2 and v2= 0.,

and Gxz = Gyz = 3 Gxy )

( _ = z + co , ko= o"b q'_-, gb = 6 M°O/h 2 )
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Figure 3.1 Geometry and notation of the crack problem.
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Figure 3.2 Geometry and notation of the corresponding symmetric crack problem.

213



1.4

1.8

C3

"_1.2

Pa£r B

Pa4r A

1.1

1"1. 1.5 2. 2.5 3.

c/t

Figure 3.3 Stress intensity factors in two-orthotropic bonded layers containing an

embedded crack under constant pressure Pr ( k0=Pl _ )

( hi=h2,c=b-_-,1=_--hl/4. ,seefigure3.1)
( for Pair A: /_2*/P_* =1.149, _=0.481 )

(for Pair B: p2*//zl*=0.871, fl=0.520 )
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Figure 3.4 Stress intensity factors in two-orthotropic bonded layers with a pressured

edge crack for different ratio of _2"/tL1 ". ( k0=P 1 _ b , h]=h 2 =hi2. )

(Material I is material 1 and p1"=12.078 )
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Figure 3.5 Stress intensity factors in two-isotropic bonded layers with a pressured

edge crack for different ratio of E2/E 1. ( v2---vl=0.3 )

( ko=p 1 ,_b--, h]=h 2 =h/2. )
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Figure 3.6 The effect of thickness ratio on the stress intensity factor in two-orthotropic

bonded layers with a pressured edge crack. ( Material Pair B, /?=0.520 )
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Figure 3.7 Stress intensity factor in two-orthotropic bonded layers containing an edge

crack and subjected to uniform bending away from the crack region.

( ko = pb_F'b -, Eq. 3.116 )
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Figure 4.1 Geometry and Loading of the layered plate with a part-through

surface crack.
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Figure 4.2 Comparison of the stress intensity factors obtained from the

finite element solution [21], the classical plate theory and the Reissner

theory, u=O.3, a/h=(2/3).
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Figure 4.3 Comparison of the stress intensity factors obtained from the

finite element solution [21], the classical plate theory and the Reissner

theory, u=0.3, a/h=l.
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Figure 4.4 Comparison of the stress intensity factors obtained from the

finite element solution [21], the classical plate theory and the Reissner

theory, u=0.3, a/h=2.
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Figure 4.5 Comparison of the stress intensity factors obtained from the

finite cleme,_t solution [21], thc classical plate theory and the Reissner

theory, u=0.3, a/h=4.
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Figure 4.8 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in an isotropic plate subjected to tension.

The normalization factor k0= koC_ is the corresponding value for an edge-cracked strip

under plane strain conditions with the same crack depth L=L 0.

( Material Pair I, hl=h2=h/2. )
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Figure 4.9 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in an isotropic plate subjected to bending.

The normalization factor k0---- koC_ is the corresponding value for an edge-cracked strip

under plane strain conditions with the same crack depth L---L 0.

( Material Pair I, hl=h2=h/2. )
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Figure 4.10 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in an isotropic plate subjected to tension.

( k0= c_t_-ll, _t=N/h, Material Pair I, hz=h2=h/2. )
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Figure 4.11 Normalized stress intensity factor at tile maximum penetration

of a semi-elliptic surface crack in a plate subjected to bending.

( ko= O'b_l, _rb=6M/h 2 , Material Pair I, hl=h 2 =h/2. )
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Figure4.12 Normalizedstressintensityfactor at the maximumpenetrationpoint

of a semi-ellipticsurfacecrackin a two-layer platesubjectto tension.The

normalization factor k0= koC_is the correspondingvaluefor an edge-crackedstrip

underplanestrainconditionswith thesamecrackdepthL=L0.
( MaterialPair B, hl=h2=h/2. )
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Figure 4.13 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in a two-layer plate subject to bending. The

normalization factor k0=koCqois the corresponding value for an edge-cracked strip

under plane strain conditions with the same crack depth L=L 0 .

( Material Pair B, hl=h 2 =h/2. )

231



2_

1.8

1.G

1.4

0
4_1.2

0 1.
_q
_" .8
4_

.G

.4

.2

0°0 " " " 1 ....... 2 3 4F | :_- " 51 - _ - G

a/h

Figure 4.14 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in a two-layer plate subjected to tension.

( ko= o-t,]'-_l , at=N/h , Material Pair B, hl=h 2 =h/2. )

232



I •

.8

0

0

.2

L°/h_

0.6

/
/

o. o 1 2 3 4 ,_

Figure 4.15 Normalized stress intensity factor at the maximum penetration point

of a semi-elliptic surface crack in a plate subjected to bending.

( ko= CrbLo, Crb=6M/h 2 , Material Pair B, hl=h 2 =h/2. )
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Figure 4.16 Normalized stress intensity factor at the maximum penetration

of a semi-elliptic surface crack in a two-layer plate subjected to tension.
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Figure 4.17 Comparison of normalized stress intensity factor at the maximum

penetration point of a semi-elliptic surface crack in a two-layer plate subjected

to tension for Material Pair I and Material Pair B.
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Appendix I

Expressions _ and

A. The general Hookes' law for an orthotropic plate can be expressed as

follows:

"_x t/xY /)xz_x = o"x - _ O'y - _ o z

_--" C11 _x _ C12 Gy _ CI3 GZ ,

"/Jyx _ VyzCy -- _ O"x + Cry - Ey °'z

= c21 _x + c22 _y + c23 _z ,

"Vzx "VzY O'y -t- Tz O'zCz = Ez °'x" Ez

= C31 #x + c32 Gy _ C33 _z ,

"/'yz -" C44 0"yz_ "/'ZX ----" C55 0"ZX, ")'xy _ C66 0"xy"

240



B. When a crack is located in the position as shown in Fig. 2.1 it can be

shown that

P -- 2] ( dl12 d22 )-1/2 [ ( dll ) 1/2 Jr 2 d12 4" d66 ]-112,,
-- -- d22 2 d22

where

dll = Cll_ d22 ---_ C22_

d12 = C12_ d66 _ c66_

for general plane stress ,

2

uall = Cll c33 - c13
c33

2

d22 = c22 c33 - c23
c33

d12 = c12 c33 - C13C23
c33

d66 = c66

for plane strain.
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C. When a crack is located in the position as shown in Fig. 4.1(b) it can be

shown that

.,_ .._ ( ell e33 )1/2 _ 1/';' 2 + 1/22 [ ( ) + e13 es5 ] '
2 e33

where

2
Cll c22 - c12

ell = C22 '

2
e33 c22 - e23

e33 = c22 '

C13 C22 - C12C32

el3 = c22 ,

e55 = c55

for plane strain.
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Appendix II

Expressions Used in Subsections 3.2 and 3.3

A. See ( 3.8 ) and ( 3.43 ) for expressions )`i ( i = 1, 14 ),

and

A 15 = A3 AI4' A16---- A4 AI3 •

=

B. Scc ( 3.2 ), ( 3.9 ), ( 3.11 ) and ( 3.14 ) for expressions _i ( i"= I, 8 ).

C. Expressions Pi (;= 1, 8):

Pz = /9_, P2 = /98, P3 -- AS' P4 = A6'

P5 "" A9, /36 = AlO, P7 "----At, P8 = A2 •

D. Expressions B i ( i = 1, 11):

B 1 -- A14/2 , B 2 = )`13/2, B3 = " + /99 )`14_

1 )`7A14, B6 1 )`8 )`13,
B4 -- " + /910 )`13, B5 = " 2fizz = " 2fl_2

B7 1 1
= 2/911 )'12 A13, B8 =" 2_12 )`12A13, B9 = )'14A3,

B 9 + B10
Blo = A4)`13' Bll --" 2
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